NAVAL AVIATION SCHOOLS COMMAND NAS PENSACOLA, FLORIDA NAVAVSCOLSCOM-SG-200 PREFLIGHT COURSE (API) MODULE/UNIT 6: # INTRODUCTION TO AIR NAVIGATION TRAINEE GUIDE APRIL 2017 Sheet 1 of 1 #### **OUTLINE SHEET 6-1-1** #### INTRODUCTION TO AIR NAVIGATION #### A. INTRODUCTION This lesson topic introduces basic air navigation concepts, principles, and terminology. #### B. ENABLING OBJECTIVES - 2.330 DESCRIBE the basic concepts, principles, and terminology used in air navigation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.331 DESCRIBE types of air navigation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.332 DESCRIBE the four basic elements of dead reckoning navigation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.333 DESCRIBE the flight instruments used in dead reckoning navigation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 #### C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Definition of Air Navigation - 4. Dead Reckoning Navigation - 5. Aircraft Instruments for DR - 6. Additional Types of Air Navigation - 7. Summary and Review - 8. Assignment - 9. Application None Sheet 1 of 7 #### **INFORMATION SHEET 6-1-2** #### INTRODUCTION TO AIR NAVIGATION #### A. INTRODUCTION **Air navigation** is defined as "the process of determining the geographic position and maintaining the desired direction of an aircraft relative to the surface of the earth." #### **B. REFERENCES** - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION There are three types of navigation: Dead Reckoning Navigation, Visual Navigation, and Electronic Navigation. Visual and electronic navigation are back-up techniques to dead reckoning. # **DEAD RECKONING NAVIGATION** **Dead Reckoning** is defined as directing an aircraft and determining its position by the application of direction and speed data from a previous position. It is the basis for all types of air navigation. Navigation is both the history and prediction of an aircraft's flight path. At the heart of DR are its four components: position, direction, time, and speed. Position is a set of coordinates that define the specific location of the aircraft above the earth's surface. Direction is an angular measurement from a reference, which determines the actual flight path from a known starting point. Speed multiplied by time will produce the distance flown (or to be flown). The combination of these four components will allow the aircrew to determine the aircraft's current position or to predict its future position. As with any mathematical relationship, if three of the four components are known, the fourth can be determined. **Position** is a geographic point defined by coordinates. There are several coordinate systems available to determine a specific location on the earth's surface. The primary system used in aviation is the latitude/longitude system. Information Sheet 6-1-2 Sheet 2 of 7 Every point on the surface of the earth can be defined by a specific **latitude** (angular distance north or south of the equator) and by a specific **longitude** (angular distance east or west of the Prime Meridian) (Figure 1-1). Lines of latitude are also called parallels, while lines of longitude can be referred to as meridians. Since they are angular distances, latitude and longitude are measured in degrees and minutes. There are 60 minutes in each degree. Latitude, starting at the equator, is measured from 0 to 90 degrees and labeled North or South. Figure 1-1 The Polar Perspective Longitude, starting at the prime meridian (0° Longitude), is measured from 0 to 180 degrees and labeled East or West, and ends at the International Date Line (180° Longitude). In Figure 1-2, NAS Pensacola is located at 30 degrees, 21 minutes north latitude; and 087 degrees, 19 minutes west longitude. This position would be written as: 30° 22'N, 087° 19'W. (Note: Always read latitude first and use 3 digits for longitude to avoid confusion. May also be expressed as N30° 22', W087° 19') **Figure 1-2 Latitude Longitude Coordinates** Information Sheet 6-1-2 Sheet 3 of 7 **Direction** is an angular distance from a reference. Direction, stated in whole numbers, is measured from 001° to a maximum of 360°. The reference for the angle can be either True North or Magnetic North. True North is the top of the earth whereas Magnetic North is the point from which all of the Earth's magnetic lines of force emanate. Magnetic North is currently located near Hudson Bay in Canada. A magnetic compass system converts the energy from these lines of force to a cockpit indicator reading. Typical military aircraft have two compass systems: a primary and a secondary/back-up. The aircrew's primary instrument for determining direction in the cockpit is the Remote Gyro Vertical Compass Card. This instrument is also referred to as a BDHI (Bearing Distance Heading Indicator) or EHSI (Electronic Horizontal Situation Indicator), but may vary by aircraft. In most modern aircraft, the inertial navigation system (INS) produces attitude and heading information for the aircrew through the use of a ring laser gyro (RLG) system and accelerometers. This data is used for pitch and roll displays as well as navigational computations. The ring laser gyro is a highly accurate way to measure changes in angular position (or angular rate) without the use of any moving parts or magnetic compass inputs. The laser gyros and accelerometers are positioned in the INS so that they are oriented along each of the three axes of the airplane. Strapping three ring laser gyros together with accelerometers on the X, Y, and Z axes of an aircraft, and then doing some math, allows for the continuous calculation of the attitude reference and changes in heading, pitch, and roll. The ring laser gyros are sensitive enough to detect the Earth's rate of rotation and it uses that information to establish the heading of the airplane. The ASN-50 magnetic compass, also known as a flux valve, was once required to Figure 1-3 Remote Gyro Vertical Compass Card Figure 1-4 Stand-by Compass Information Sheet 6-1-2 Sheet 4 of 7 provide measurements of magnetic direction for older INS and mechanical gyro systems. The modern INS and RLG no longer require any external input from a magnetic compass to determine and maintain aircraft heading information (see Figure 1-3). As a backup to the primary system, all aircraft have a Stand-by Compass (see Figure 1-4). This is a direct reading compass in which the measurement of direction is taken directly from a balanced/pivoted magnetic needle. The stand-by compass is sometimes called the "wet" compass because it is filled with a fluid to dampen needle movement. This compass is unstable during maneuvering, but it has the advantage of reliability and is independent of the aircraft's electrical system. Discussion of direction will continue in Lesson Topic 6.2 when charts and plotting techniques are introduced. **Time** can be expressed in several ways: as the time of day (0815, 1400, etc.) or elapsed time. Elapsed time is written as hours and minutes or minutes and seconds. With elapsed time, the units are separated with a "+" sign (2+30, 3+15, etc.). It may also be expressed in a six digit format such as 09+15+20. Estimated time of departure (ETD) and estimated time of arrival (ETA) can be expressed in four-digit time of day format, while elapsed time, such as estimated time en route (ETE), will be expressed in hours and minutes (or for short distances, minutes and seconds). All aircrew must be able to convert from local time to Greenwich Mean Time (Zulu time) and vice versa. This will be covered in greater detail in Lesson Topic 6.2. **Speed** is the magnitude of the velocity of an aircraft. It is the distance traveled with respect to time and is stated in nautical miles per hour (knots). Lesson Topics 6.3 and 6.4 will cover speed in greater detail and explain how atmospheric conditions (altitude, temperature) affect it. $Speed = \underline{Distance}$ Time #### **AIRCRAFT INSTRUMENTS FOR DR** There are three primary aircraft instruments essential for DR navigation (Figure 1-5). The combination of these instruments provides the information required to determine and track an aircraft's position and movements. Information Sheet 6-1-2 Sheet 5 of 7 <u>Instrument</u> <u>Function</u> BDHI / Remote gyro Direction and Position vertical compass card Clock Time Airspeed indicator Speed **Figure 1-5 Primary DR Instruments** Two secondary instruments (Figure 1-6), the altimeter and outside air temperature (OAT) gauge, provide altitude and temperature information. This information is used to calculate the effects of the air's density. The density of the air affects the aircraft's true airspeed. Position information is provided through visual or electronic means. **Figure 1-6 Secondary DR Instruments** Information Sheet 6-1-2 Sheet 6 of 7 #### ADDITIONAL TYPES OF NAVIGATION To assist the aviator in the DR process, there are two additional types of navigation: visual and electronic. It is important to understand that these are aids available to the aviator in the DR process and does not relieve an aviator of the responsibility to keep a good DR plot. **Visual Navigation** requires maintaining direct visual contact with the earth's surface. Visual navigation supports DR by using ground references to determine current position or to provide steering cues to a destination. Visual navigation is most commonly used for helicopter operations and for high speed/low level flight by tactical aircraft. Its obvious limitation is that it requires sufficient visibility and visual references. Visual navigation is not a stand-alone form of navigation.
Without DR, the aviator is likely to misidentify ground references and become lost. **Electronic Navigation** requires the use of electronic devices to determine position. They can be grouped into three general categories. In the first category, electronic signals are received from ground stations (VOR, TACAN, ADF, VORTAC, and VOR/DME). The second category of electronic devices will transmit their own signals (RADAR, DOPPLER). The last group is self-contained and requires the aviator to input the starting location (INERTIAL NAVIGATION SYSTEM or INS). The INS is a high speed DR computer that does the same thing the aviator does but faster and with greater accuracy. The newest addition to the electronic navigation family is the Global Positioning System (GPS). This system receives its input from space-based satellites. The discussion of electronic navigation for this class will be limited to TACAN. #### TACTICAL AIR NAVIGATION (TACAN) A **TACAN** is a ground-based system that provides the aviator with precise position information. Position is determined by providing the distance (in NM) away and by giving the magnetic bearing (radial) from the station. Since the TACAN station is at a known geographic location, the aircrew will be able to determine their position above the earth's surface via their relationship to the station. The procedures for this are covered in detail in Lesson Topic 6.2. A TACAN station operates in the 962 to 1213 MHz frequency range with the individual UHF frequencies being assigned to a channel. These channels number 1 to 126 with a sub-designation of "X" or "Y". Each TACAN emits 360 unique signals that are carefully calibrated to magnetic north and radiate out from the station. These radials look similar to the spokes of a wheel (Figure 1-7). The radial that the aircraft is currently on and the distance from the station are displayed in the cockpit allowing the aircrew to "fix" their position. Information Sheet 6-1-2 **Figure 1-7 Station Magnetic Radials** Sheet 1 of 3 #### **ASSIGNMENT SHEET 6-1-3** #### INTRODUCTION TO AIR NAVIGATION #### A. INTRODUCTION This lesson topic introduces basic air navigation concepts, principles, and terminology. - B. ENABLING OBJECTIVES - C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 1 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 2 - D. STUDY QUESTIONS - 1. Which of the following is NOT a basic type of air navigation? - a. Dead reckoning - b. Autopilot - c. Visual - d. Electronic - 2. Which of the following navigation methods relies on adequate visibility? - a. Dead reckoning - b. Visual - c. Electronic - d. Radar | 3 | . The four major comp | onents | of DR | navigation | are po | sition, | direction | 1 | |---|-----------------------|--------|-------|------------|--------|---------|-----------|---| | | (heading), time and | | • | | | | | | | | 6/, | | | | | | | | - a. altitude - b. temperature - c. chart work - d. speed # Assignment Sheet 6-1-3 Sheet 2 of 3 Match the three primary aircraft navigation instruments with the information they provide: INSTRUMENT FUNCTION - 4. Compass5. Clock6. AirspeedC. Time - 7. BDHI D. Position and Direction - 8. Parallels are also called lines of latitude and run generally horizontal (left/right) on the chart. - a. True - b. False - 9. Latitude is divided up into minutes. Each minute has 60 degrees. - a. True - b. False - 10. The standby compass is stabilized by gyroscopes to dampen needle movements. - a. True - b. False - 11. The Remote Gyro Vertical Compass Card is the primary instrument for determining direction. - a. True - b. False # Assignment Sheet 6-1-3 Sheet 3 of 3 # **Answers:** - 1. B - 2. B - 3. D - 4. B - 5. C - 6. A - 7. D - 8. A - 9. B - 10. B - 11. A Sheet 1 of 2 #### **OUTLINE SHEET 6-2-1** #### CHART PROJECTIONS, PLOTTING AND GLOBAL TIMEKEEPING #### A. INTRODUCTION This lesson introduces the student to the most widely used air navigation charts, and explains that these charts are essential tools for effective air navigation. This lesson will also introduce the student to the global timekeeping system that will aid in understanding and coordinating navigation problems. #### **B. ENABLING OBJECTIVES** - 2.334 DESCRIBE a great circle route, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.335 DESCRIBE Lambert Conformal charts, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.336 DESCRIBE the relationship among heading, course, and track, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.337 EXPLAIN magnetic variation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.338 COMPUTE true and magnetic directions using magnetic variation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.1 DESCRIBE the global timekeeping system, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.2 SOLVE global timekeeping problems, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.3 LOCATE geographic points on a navigational chart using a navigation plotter to within +/-1/2 nautical mile and expressed in latitude and longitude, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.4 PLOT geographic points on a navigational chart given their latitude and longitude using a navigation plotter to within +/- 1/2 nautical mile, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Outline Sheet 6-2-1 Sheet 2 of 2 4.5 PLOT courses on a navigational chart using a navigation plotter and dividers to within +/one degree and +/- 1/2 nautical mile, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.6 MEASURE directions on a navigational chart using a navigation plotter and dividers to within +/- one degree and +/- 1/2 nautical mile, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.7 PLOT an aircraft's geographic position on a navigational chart based on its relationship to a TACAN station using a navigation plotter and dividers to within +/- one degree and +/- 1/2 nautical mile, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 #### C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Chart Projections - 4. Chart Projections: Lambert Conformal - 5. Direction - 6. Magnetic Variation - 7. Magnetic Variation: Calculations - 8. Global Timekeeping System - 9. Global Timekeeping System: Calculations - 10. Plotting Equipment - 11. Chart Markings - 12. Locating Points - 13. Plotting Coordinates - 14. Measuring Direction - 15. Plotting Directions - 16. Measuring and Plotting Distances - 17. TACAN Position Fixing Sheet 1 of 25 #### **INFORMATION SHEET 6-2-2** #### CHART PROJECTIONS, PLOTTING AND GLOBAL TIME KEEPING #### A. INTRODUCTION This information sheet introduces the student to the most widely used air navigation charts, and explains that these charts are essential tools for effective air navigation. This information sheet will also introduce the student to the global timekeeping system that will aid in understanding and coordinating navigation problems. #### B. REFERENCES - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION #### **CHART PROJECTIONS** Because the earth is a sphere, it cannot be flattened and still maintain the integrity of the surface. Therefore, a sphere is an undevelopable surface. Figure 2-1 shows the results of such an attempt. Figure 2-1 Undevelopable Surface A chart is a small-scale representation of the earth's surface. No chart can be entirely accurate in its representation since it is a two-dimensional piece of paper and the earth is a three-dimensional sphere. Some distortion is always present, but it can be minimized. Charts are projected on surfaces that can be Information Sheet 6-2-2 Sheet 2 of 25 flattened without stretching or tearing, such as a cone. This surface is called a developable surface. The problem in creating a chart projection lies in developing a method for transferring the meridians and parallels to a developable surface that will preserve certain desired characteristics. <u>Constant Scale</u>: If the chart scale is, for example, "one inch equals one hundred miles," then it is desirable that the scale be constant and accurate in every direction for the entire area covered by the chart. Course Lines are Great Circles: A great circle is a circle formed by continuing the arc inscribed by connecting the shortest distance between two points on a sphere. Further defined, it is a circle whose plane passes through the earth's center, dividing the earth into two equal halves. Several great circles are shown in Figure 2-2. Notice that great circles are not limited to being horizontal or vertical. They can be at any angle that divides the sphere into two equal halves. A great circle route is important because it is the shortest Figure 2-2 Great Circles distance between two points, saving both time and fuel. Only one parallel, the equator, forms a great circle. However, all meridians are great circles since they vertically bisect the earth. Simply stated, the intersection of a sphere and a plane is a circle - a great circle if the plane passes through the center of the sphere and a small circle if it does not. #### LAMBERT CONFORMAL PROJECTION The most widely used projection is the Lambert Conformal Projection. It is referred to as a "conic" projection because it is developed by placing a secant cone over the earth, intersecting the earth at two lines of latitude called "standard parallels." The development of a
Lambert Conformal chart projection is illustrated in Figure 2-3. Characteristics of a Lambert #### Conformal Projection - Parallels equally spaced concentric circles - Meridians straight lines converging at the poles - Scale constant distance scale - Great circle plot as straight lines Information Sheet 6-2-2 Sheet 3 of 25 # TYPES OF LAMBERT CONFORMAL CHARTS The main types of Lambert Conformal charts available for navigation are the Operational Navigation Chart (ONC) and the Tactical Pilotage Chart (TPC). A legend that explains chart symbology is located in the left margin. It is important to mention that the meridians of all Lambert conformal charts (such as the ONC and TPC) are oriented toward the geographic (true) North Pole. The ONC provides worldwide coverage at a scale of 1:1,000,000. It contains multicolor hydrographic and cultural features and is used for planning long-range navigation. You will be exposed to the ONC chart at your follow-on squadrons. The TPC provides worldwide coverage at a scale of 1:500,000. It provides increased details of ground features significant for visual and low-level radar navigation. The TPC is the most commonly used chart for route and checkpoint determination. A section of a TPC chart covering NAS Pensacola is depicted in Figure 2-4. There are other chart projections available such as the Mercator, a cylindrical chart projection which uses a cylinder rather than a cone as its developable surface. However, the disadvantages of this projection (such as variable distance scales and curved great circle routes) make it awkward Figure 2-4 TPC Chart for aviation navigation purposes; therefore, it is used less frequently. Information Sheet 6-2-2 Sheet 4 of 25 ## **COURSE / HEADING / TRACK** Lesson Topic 6.1 introduced direction as one of the four components of DR navigation. Direction can be further defined by three related terms: course, heading, and track. Additionally, course and heading can be expressed as true or magnetic, depending on Figure 2-5 Course whether True North or Magnetic North is used as the reference. Course is the aircraft's intended flight path. When a straight line is drawn from departure point to destination on a Lambert conformal chart (oriented to True North), the "True Course" (abbreviated TC), is plotted. Figure 2-5 shows and intended flight from the Mobile TACAN to the Whiting Field TACAN. **Heading** is the angular distance of the aircraft's longitudinal axis from a reference (typically True North or Magnetic North). Generally speaking, heading is the direction the nose of the aircraft is pointed. Figure 2-6 shows how True Heading is Figure 2-6 Heading Information Sheet 6-2-2 Sheet 5 of 25 determined. The heading of the aircraft will differ from the course in order to compensate for crosswinds. Lesson Topic 6.5 covers wind in detail. **Track** is the aircraft's actual flight path over the ground. Suppose an aircraft took off from Mobile and underestimated the northerly wind. A line drawn from the departure point to the aircraft's present location ("fix" position) shows the track, or actual flight path, of the aircraft (see Figure 2-7). The aircraft's actual path over the ground is shown as a dashed line. Figure 2-7 Track ### **CONVERTING FROM TRUE TO MAGNETIC** Because the Lambert conformal chart is referenced (via the meridians) to True north lines drawn on them are True directions. The heading systems in all aircraft are referenced to Magnetic North. In order to fly the course, it must be converted from a True course to a magnetic course. This is accomplished through the use of magnetic variation. #### **VARIATION** Lesson Topic 6.1 discussed how cockpit compass systems are referenced to the magnetic lines of force (Magnetic North). The Magnetic North Pole is located in northern Canada near the Hudson Bay, far from the geographic True North Pole (Figure 2-8). **Variation** is the angular difference between True North and Magnetic North from any given position on the earth's surface. Variation is expressed in degrees east or west. Figure 2-8 True / Magnetic North Poles Information Sheet 6-2-2 Sheet 6 of 25 Figure 2-9 Easterly Variation If a line is drawn from Hawaii to True North and another line from the Hawaii to Magnetic North, the angular difference <u>from</u> True <u>to</u> Magnetic North is the variation. In this example, <u>variation is easterly, since</u> <u>Magnetic North is to the east of True North from this particular position</u> (Figure 2-9). Plotting lines to the poles to determine variation is not necessary. Charts contain isogonic lines that depict variation for the area covered by the chart. An **isogonic line** connects points of equal variation. A world chart showing all isogonic lines is depicted in Figure 2-10. On TPC and ONC charts, isogonic lines appear as dashed blue lines with the variation stated in degrees. Figure 2-10 Isogonic Lines Information Sheet 6-2-2 Sheet 7 of 25 In order to convert a True Course to a Magnetic Course we use the following formulas: **MC = TC - East Variation** MC = TC + West Variation To convert a True Course to a Magnetic Course, we use the memory aid, "East is least, and West is best". This is a reminder to subtract easterly variation and add westerly variation to determine the Magnetic Course. Example: In the vicinity of Pensacola, the variation is 2° east. If True Course measures 045°, subtract 2° to yield a Magnetic Course of 043°. ### **GLOBAL TIMEKEEPING SYSTEM** Due to the large distances covered in air travel, it is necessary to use a common time standard to allow for coordination of assets on a global basis. The Local Mean Time (LMT) must be converted to a common reference. This reference is the time at the prime meridian (which passes through Greenwich, England) called Greenwich Mean Time or GMT, and it's also referred to as "ZULU" (Z) time. #### TIME ZONES Time is measured in terms of the rotation of the earth. Since the earth rotates 360° in a 24-hour period, we divide 360 by 24 to yield 15° of rotation in one hour. This divides the earth into 24 time zones; each 15° of longitude in width, making the time between each zone differ by one hour. Each time zone is centered on a meridian that is a multiple of 15°. The time within each zone is called **Local Mean Time** (**LMT**). Information Sheet 6-2-2 Sheet 8 of 25 Each time zone has been given both alphabetic and numeric designators. The alphabetic designator for the time zone centered on the zerodegree meridian (the prime meridian) is "Z" (Zulu). The time within the Zulu time zone is called Greenwich Mean Time (GMT). Figure 2-11 Time Zones Greenwich Mean Time is used as the reference for each of the remaining zones. The **zone description** (**ZD**), numeric designator for any zone, indicates the difference in hours from local time to GMT. In air travel, where great distances can be covered in a short time, it is inconvenient to keep track of time zones being crossed. To avoid confusion, Greenwich Mean Time is the standard used for aviation since GMT is the same all over the world at any particular instant in time. For example, weather briefs and flight plans are filed using GMT. Therefore, you must be able to convert any local time to GMT and GMT to local time. #### **ZONE DESCRIPTIONS (ZD)** The first step in time conversions is determining the zone description. Theoretically, the zone description could be found by dividing the local longitude by 15, since each zone is 15° wide, but problems arise because the zone boundaries have been modified (for greater convenience) along geographical and political boundaries. Cities and other populated areas are not split between two time zones. In some countries that overlap two or three zones, one zone is used throughout. Also, zone descriptions are influenced by daylight savings time. Information Sheet 6-2-2 Sheet 9 of 25 The most common source for Zone Descriptions is the IFR en route Supplement. The ZD is found by looking up the departure or arrival airport and locating the ZD after the latitude and longitude coordinates in the first paragraph. For Sherman Field the ZD is -6 except in #### PENSACOLA NAS, (FORREST SHERMAN FLD) FL O KNPA N 30"21.2"N 87"19.2"W 30 UTC-6(-5DT) H-5D, L-18E (7137x200 ASP S114 T206 ST175 TT382 TDT850) (B) RWY-01 L6 --E5 (33' OVRN) E-28(B) (1544')-E-28(B) (1100") E5- (126" OVRN) (8002x200 ASP S114 T206 ST175 TT382 TDT850) L6 RWY-25R RWY-07L L6 --E5 (149' OVRN) E-28(B) (1200') E-28(B) (1300") E5-+ (149" OVRN) (8001x200 ASP S114 T206 ST175 TT382 TDT850)-L6 RWY-25L RWY-07R L6,7,8 -E-28(B) (1450') E5→ (123' OVRN) +-E5 (123' OVRN) E-28(B) (1300')-SERVICE - LGT - Mobile OLS 3.25° avbi all rwy. A-GEAR - 15 min PN rgr to remove A-GEAR. E5 RATING - 01 370 HW (DRY), 07R 475 HW (DRY), 07L-25R-25L 475 HW (DRY/WET), 19 540 HW (DRY) 330 HW (WET). JASU - 3(NC-8) 4(GTC-85 Navy F4 emerg start cnly) 1(NCPP-105) FUEL - Acft nitrogen and oxygen svcg avbl 1400-2200Z++ wkends and hol. 100LL, J5 0-128-148-156 SP LHOX LOX OXRB TRAN ALERT - Tran svc avbl 1300-0500Z++ Mon-Fri; 1400-0400Z++ Sat, Sun, hol; ltd tran maint avbl 1400-2200Z++ Mon-Fri only. Tran acft exp extv svcg delays. REMARKS - Opr 1200-0600Z++ Mon-Fri; 1400-0400Z++ Sat, Sun, hol. RSTD - PPR all acft, exc CNATRA/NALO/AIREVAC, etc Base OPS DSN 922-2431, C904-452-2431. Crs rule brief rgr for tran acft or Icl/round-robin flt. CAUTION - Ints VFR trng tfc. Vcnty OLF Saufley extv fit trng. TFC PAT - Ldg/taxi lgt rqr all ldg when wx cond permit. SID recommended for IFR dep. See Mandatory IFR Arr Pro-FLIP AP/1 Supplementary Arpt Rmk. Reduced rwy separation std in eff USN/USMC acft. Multiple apch severely ltd dur single rwy opr. CSTMS/AG/IMG - CSTMS, AG avbl if prior arng made 24 hr in advance. MISC - Class G Airspace off 0600-1200Z++ Mon-Fri; 0400-1400Z++ Sat, Sun, hol. Class E 700' AGL and abv. Figure 2-12 Enroute Supplement daylight savings time when it is -5. (Figure 2-12) An additional source for ZD is the TPC that covers the area
of interest. For this navigation course, the zone description will always be given to you. #### **CONVERSION FORMULAS** Once the zone description has been determined, it can be applied to local mean time to obtain GMT. Using the ZD from the en route supplement, the formula is: $$GMT(Z) = LMT - (ZD)$$ If given Greenwich Mean Time and the zone description, the formula for finding local mean time would be: $$LMT = GMT(Z) + (ZD)$$ #### Example #1 If LMT is 0700 and the zone description is -6, what will the Greenwich Mean Time be? GMT (Z) = LMT - (ZD) GMT (Z) = 0700 - (-6)GMT (Z) = 1300Z NOTE: Remember that to subtract a negative number, you actually add. NOTE: You will usually see a Information Sheet 6-2-2 Sheet 10 of 25 "Z" after Zulu time. Now, try some conversions with flight time figured in. #### Example #2 If you are given an arrival time into Manama, Bahrain (+3) of 1200 Z, what is your local arrival time? $$LMT = GMT + (ZD)$$ $LMT = 1200 Z + (+3) LMT = 1500$ #### Example #3 You are leaving Navy North Island (ZD - 8) at 1100L with a flight time of 4+00. Will you arrive at NAS Pensacola (ZD - 6) in time for Happy Hour (1600-1800)? Step 1 - Convert take off time to ZULU $$GMT = LMT - (ZD)$$ $$= 1100 - (-8)$$ $$GMT = 1900Z Take Off$$ $$1900Z + 4+00 = 2300Z$$ Land Step 3 - Convert landing time to local $$LMT = GMT + (ZD)$$ = 2300Z + (-6) = 1700L Information Sheet 6-2-2 Sheet 11 of 25 #### **PLOTTING** This section discusses the equipment and techniques used in plotting. ## PLOTTING EQUIPMENT The dividers (Figure 2-13) are used primarily for measuring distances. A secondary use (when combined with the plotter) is to measure courses. Figure 2-13 Dividers Figure 2-14 Plotter The <u>plotter</u> (Figure 2-14) is a combination protractor and straightedge. It is used to aid in drawing course lines and measuring direction. The parts of the plotter include the straightedge itself, the grommet (center hole of the protractor section), and the scales on the protractor outer edge. The scales run from 0° to 180° on the top of the outer scale, and from 180° to 360° on the bottom of the outer scale. The number line on the plotter is reversed (i.e. the numbers increase to the left and decrease to the right). There is also an inner scale (called the north/south scale), which will be helpful in measuring course lines that run close to the north-south axis of the chart. Do not use the distance scales on the Information Sheet 6-2-2 Sheet 12 of 25 straightedge, as they are not accurate. The dividers will be used to measure distances. ### LATITUDE/LONGITUDE COORDINATES If you do not know the Latitude/Longitude coordinates, you need to <u>pull</u> them. If you know the Latitude/Longitude coordinates, then you will plot them. #### PULLING COORDINATES - 1. Find the point to be measured on the chart. - 2. Position the plotter so that the desired point is slightly below the straightedge. Carefully align the grommet and 90° mark on the outer scale so that they lie along the same meridian (any meridian). Slide the plotter down until the straightedge touches the point of interest. Check to make sure that the grommet and the 90° mark are still aligned with the meridian and, if necessary, adjust the plotter so they do (Figure 2-15). - 3. Mark the point on the meridian where the straightedge of the plotter crosses the meridian. Remove the plotter. Locate the nearest whole degree of Latitude and count up the meridian. There are speed marks on the meridian to avoid the need to count each tick mark. Starting at a printed parallel, every 5 minutes, is a larger mark that is still on the left side of the meridian. At 10 minutes, the mark is even larger and extends on either side of the meridian. Round to the nearest tenth of a minute. Figure 2-15 Latitude Information Sheet 6-2-2 Sheet 13 of 25 4. To determine the Longitude coordinate, repeat steps 1 through 3 above aligning the plotter to a parallel instead of a meridian (Figure 2-16). Figure 2-16 Longitude #### PLOTTING COORDINATES Any given set of coordinates can be plotted using the same principles. - 1. Position the plotter horizontally with the grommet and the 90° mark of the outer scale along the same meridian. Move the plotter vertically until the straightedge rests along the desired parallel (Latitude coordinate). Draw a line along the straightedge. - 2. Rotate the plotter 90°, aligning the straightedge vertically, and place the grommet and the 90° mark along the same parallel. Move it horizontally until the desired Longitude coordinate is under the straightedge. Again, draw a line along the straightedge. - 3. The intersection of these two lines is the location of the coordinates. #### **MEASURING DIRECTION** - 1. Locate the two points of interest. - 2. Connect the two points with a straight line using the straightedge of the plotter. Draw a single arrow depicting the direction of travel. Information Sheet 6-2-2 Sheet 14 of 25 Next, always estimate the approximate direction of travel to avoid choosing a reciprocal course direction (180° error). In Fig 2-17, the course is generally heading northwest; therefore, the True Course should be between 270° and 360°. 3. Spread the dividers and place the tips on the course line. If they will reach, place the tips of the dividers on the two points (Figure 2-18). Figure 2-17 Measuring Direction - 4. Place the straightedge of the plotter against the two points of the dividers (Figure 2-18). - 5. While keeping the straightedge against the dividers' points, slide the plotter along the course line until the plotter's grommet is over a meridian (Figure 2-18). NOTE: Greatest accuracy can be obtained by using a meridian exactly halfway along your course, but using nearby meridians for convenience will still provide satisfactory results. Information Sheet 6-2-2 Sheet 15 of 25 Figure 2-18 Measuring East/West Direction 6. In conclusion, go to the outer two scales and note where the meridian (the one under the grommet) intersects the scales. There will be a choice of two answers, choose the one that is nearest the estimate. Be sure to count the marks carefully and remember the scale increases in a <u>counterclockwise</u> direction (Figure 2-18). CAUTION: Be careful to interpret the scales of the plotter correctly. Always look at the scale numbers Information Sheet 6-2-2 Sheet 16 of 25 to both the left and the right of the meridian being used. This is known as bracketing and eliminates erroneous answers that could be off by as much as ten degrees. If a course line runs generally north and south, it may be difficult, if not impossible, to slide the plotter along the course line until a meridian falls under the plotter's grommet. The north/south scale (the innermost scale on the plotter) can be used in this situation. The procedures are the same in that the plotter's straight edge is kept on the course line, but now a <u>parallel</u> is placed under the plotter's grommet. Then, follow that parallel out to the inner north/south scale to read the answer (Figure 2-19). Again, there is a choice of two answers, so it is imperative to <u>estimate</u> the general course direction before beginning. Figure 2-19 North/South Course Measurement Information Sheet 6-2-2 Sheet 18 of 25 # Measuring Courses Summary - 1. Always estimate the answer first. - 2. Span dividers along the course line. - 3. Place the straightedge against the dividers and slide it until the grommet is over a meridian or parallel. (Figure 2-18) - 4. When placing a meridian under the grommet, read the course from the outer scales. (Figure 2-19) - 5. When placing a parallel under the grommet, read the course from the inner north/south scale. Information Sheet 6-2-2 Sheet 19 of 25 **Figure 2-20 Plotting East/West Direction** # **Plotting Direction** - 1. Locate the point of interest. - 2. Estimate the direction. - 3. Place a pencil on the point of interest and slide the straightedge of the plotter up against the pencil. Information Sheet 6-2-2 Sheet 20 of 25 4. Place the grommet of the plotter over the nearest meridian sliding the grommet up and down the meridian until the desired direction is read under the outer scale. (Figure 2-20) **Figure 2-21 Plotting North/South Direction** Note: Estimating the direction first will maintain individual focus when selecting the angle from the proper plotter scale. Information Sheet 6-2-2 Sheet 21 of 25 If a direction line runs generally north and south, it may be difficult, if not impossible, to slide the plotter along the direction line until a meridian falls under the plotter's grommet. The north/south scale (the innermost scale on the plotter) can be used in this situation. (Figure 2-21) The procedures are the same in that the plotter's straight edge is kept on the point of interest, but now a <u>parallel</u> is placed under the plotter's grommet. Next, slide the grommet along the parallel until the desired direction is read under the inner north/south scale (Figure 2-21). Again, it is imperative to <u>estimate</u> the general course direction before beginning. Information Sheet 6-2-2 Sheet 22 of 25 **Figure 2-22 Measuring Distance** Note: The plotter outer scale is applicable when using meridians whereas the inner scale is applicable when using parallels. ## Measuring Distances In navigation, the standard for distance measurement is the nautical mile. On Lambert conformal Information Sheet 6-2-2 Sheet 23 of 25 projections one **nautical mile** equals one minute of arc measured along any great circle. All lines of longitude (meridians) are great circles; therefore, one- degree (60 minutes) measured along a meridian equals 60 nautical miles. It is important to understand that this is NOT a degree of longitude, but actually a degree of latitude. Degrees of latitude are marked on the longitude lines. **Never** measure distance along a parallel. On Lambert Conformal charts a course line is a segment of a great circle. To find the distance of the course, compare it's length to
an equal length of another great circle (any meridian) (Figure 2-22). - 1. Spread the dividers, putting a tip on each point. - 2. Being careful not to move the divider setting, transfer the divider to the nearest meridian with one leg on the intersection of meridian and parallel. - 3. Use the speed marks to help count the tick marks along the **meridian**. On a TPC, each tick mark is 1 nautical mile (NM). If the dividers will not reach between the two points, set the dividers at a fixed distance (30 NM is a good distance), and "walk off" this fixed distance along the course. - 1. Set the dividers for 30 NM using any meridian. - 2. Place the dividers along the course line with one tip on the departure point. Rotate the dividers by lifting one point off the departure and keeping the other point on the course line. Lay the first tip on the course ahead of the other. Continue "walking" the dividers in this manner until the point of the dividers ends up past the destination point. Count each "step" of the walk in multiples of 30 (30, 60, 90, etc.). Now squeeze the dividers closed to measure off this remaining distance and add it to the multiples of 30. ## **TACAN POSITION FIXING** Recall the discussion in lesson 6.1 concerning the operation of the TACAN. If the aircrew knows what radial of the TACAN the aircraft is currently on and the distance from the station, then the position of the aircraft relative to the station can be determined. This ultimately determines the aircraft's position over the earth. The information relative to the station is displayed in the cockpit on an instrument called the Bearing Distance Heading Indicator (BDHI). Figure 2-23 contains a typical BDHI found in most military aircraft. The information concerning the TACAN is displayed on the #2 needle. The point of the needle (called the head) gives a magnetic bearing to the station. The tail displays the current radial. In Figure 2-23, the aircraft is on the 135 radial and is 7.5 nm from the station. The distance displayed is actually a slant range. For purposes of this course the slant range is equal to the ground range. Information Sheet 6-2-2 Sheet 24 of 25 To determine our position we must first determine the magnetic variation of the station. This is found in the en route supplement under the name of the TACAN or under the NAVAID section of an airfield (for a TACAN located on an airfield). If the aircrew had selected the Lake Charles TACAN to fix their position, they would have had to look under Lake Charles to find that the magnetic variation is 7° east. Figure 2-23 BDHI Information Sheet 6-2-2 Sheet 25 of 25 This 7° must be ADDED to the 135° radial in order to plot the true radial (Refer back to the section in this unit on variation. Because we are going from magnetic to true, the formula is reversed. This produces a True radial of 142°. This is plotted from the station using the techniques described previously in the plotting section. The last thing to do is measure the distance from the station and mark the point on the radial drawn. The circle in Figure **Figure 2-24 TACAN Position Fixing** 2-24 is the TACAN position fix. Note: For this course, use the magnetic variation from the nearest isogonic line to the NAVAID. Sheet 1 of 7 #### **ASSIGNMENT SHEET 6-2-3** ## CHART PROJECTIONS, PLOTTING AND GLOBAL TIMEKEEPING #### A. INTRODUCTION This lesson introduces the student to the most widely used air navigation charts, and explains that these charts are essential tools for effective air navigation. This lesson will also introduce the student to the global timekeeping system that will aid in understanding and coordinating navigation problems. ## B. ENABLING OBJECTIVES ## C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 2 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 3 ## D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. | 1. | The shortest distance between any two points on the earth's surface is a a. route over the north pole b. concentric circle c. constant heading d. great circle route | |----|---| | 2. | A great circle route is desirable because a. it is the shortest distance b. it saves time c. it saves fuel d. All of the above | | 3. | On a Lambert conformal chart, every is a great circle, but only one, the is a great circle. a. meridian, parallel, equator b. parallel, meridian, the prime meridian c. curved line, parallel, equator d. straight line, meridian, the international date line | TRAINEE GUIDE Q-9B-0020L Sheet 2 of 7 Assignment Sheet 6-2-3 4. On a Lambert conformal chart, parallels appear as lines, and meridians appear as lines. a. straight, curved b. curved, straight c. straight, straight d. curved, curved 5. The ONC is a 1:1,000,000 scale Lambert conformal chart and the TPC is a 1:500,000 scale Lambert conformal chart. a. True b. False 6. The meridians of both the ONC and the TPC charts are oriented to the magnetic north pole, so course lines plotted on these charts are magnetic courses. a. True b. False 7. The angular difference from true north to magnetic north from any given position is called a. deviation b. isolation c. magnetic variation d. strangulation 8. A line connecting points of equal variation which can be found on most Lambert conformal charts is called a(n) a. Prime Meridian b. International Date Line c. line of demarcation d. isogonic line Match the following: 9. ____ Course A. Direction in which the aircraft is pointed 10. Heading B. Intended flight path C. Actual flight path 11. ____ Track | 12. Latitude is measured alonga. a parallel, a meridian | and longitude is measured along | |---|---| | b. a meridian, a parallel | | | c. a line of latitude, a line of longitude | le | | d. None of the above | | | 13. Locate the 223' tower at N 28° 42'. | 0, W 091° 14.0': Draw a True Course of 235° FROM the tower | | Measure 25 nm. What are the coordinat N W | tes of this point? | | 14. Plot the following coordinates: N 28 distance from the previous point (answer | 8°16.0', W 091°28.0'. Measure the Magnetic Course and er from problem 13) to this point. | | MC =° | | | Dist=nm | | | • | the following coordinates: N 29°06.0', W 091°08.0'. Given a | | for the new point? | e of 41 nm from your present position, what are the coordinates | | N W | | | | a following accordinates: N 20056 0' W 001001 0' Civan a | | • | the following coordinates: N 28°56.0', W 091°01.0'. Given a set of 49 nm from your present position, what are the coordinates | | for the new point? | of 49 min from your present position, what are the coordinates | | N W | | | 17. Plot the following coordinates: N 28 | 8°36.0', W 091°38.0'. A 290' tower lies on an approximate | | Magnetic Course of 228° at 32 nm. Wh | • | | N W | | | 18. From the tower in problem #17, me | asure the Magnetic Course and distance to: N 29°06.0', W | | 092°08.0' | - | | MC =° | | | Dist=nm | | | 19. Measure tl | he Magnetic Course and distance between: N 29°14.0', W 090°58.0', and N 29°06.0', W | |--|--| | 092°08.0' | | | MC = | o | | Dist= | | | approximately | ollowing coordinates: N 28°42.0°, W 091°22.0°. A small island (Eugene Island) lies of 40 nm due north from this point. Find the coordinates of Eugene Island, then measure Course and exact distance from the given point to the island. | | 21. Measure tl
091°08.0'
MC =
Dist= | he Magnetic Course and distance between: N 29°14.0', W 090°58.0', and N 28°36.0', W | | 22. Measure the 1091°31.0' | he Magnetic Course and distance between: N 28°36.0', W 091°08.0', and N 28°59.0', W | | MC = | 0 | | Dist= | nm | | 23. Measure the 191°28.0' MC = Dist= | | | | | | | he Magnetic Course and distance between: N 28°25.0', W 091°28.0', and N 29°30.0', W | | 092°00.0'
MC = | o | | Dist= | | | | | ## Assignment Sheet 6-2-3 Sheet 5 of 7 Plot the following TACAN position fixes from the Lufkin TACAN (CH 58) (31°10'N/ 094°43'W). Measure the latitude and longitude and describe the given target.. - 25. 074 Radial/31.5 DME - 26. 060 Radial/52 DME - 27. 306 Radial/35 DME Plot the following TACAN position fixes from the Esler TACAN (CH 126) (31°26.8'N/ 092°19.2'W). Measure the latitude and longitude and describe the given target - 28. 144 Radial/25 DME - 29. 064 Radial/43 DME Calculate the missing value. | | ZD | GMT | LMT | |-----|------|------|------| | 30. | + 9 | 1320 | | | 31. | - 3 | 2130 | | | 32. | + 4 | | 1410 | | 33. | - 6 | | 1652 | | 34. | - 11 | 0412 | | | 35. | + 7 | | 1815 | | 36. | + 4 | 0710 | | | 37. | - 10 | 1215 | | | 38. | + 3 | 1730 | | | 39. | - 6 | | 1920 | Assignment Sheet 6-2-3 Sheet 6 of 7 40. An EA-18G Growler departs NAS Whidbey Island (where the ZD is -8) at 0900 local time for NAS Oceana (ZD is -5). What is the local time in Oceana at takeoff time? 41. A division of F-35B Lightnings departs NAS Pensacola (ZD is -6) at 1500 local time on a four hour flight to MCAS Miramar (ZD is -8). Will the pilots make happy hour at Miramar if happy hour ends at 1900 local time? 42. You plan a 1715z departure from MCAS Cherry Point (ZD is -5) for a flight to Tinker AFB (ZD is -6) with an estimated time enroute of 2 hours
and 20 minutes. What is your local time of arrival? 43. If you wanted to place a phone call to a friend in Naples, Italy (ZD is +1), and you wanted the phone to ring at 1300 local Naples time, at what time in Pensacola (ZD is -6) would you have to place the call? ____ 44. A P-8 Poseidon departs San Francisco at 1300 local time on 2 January where the ZD is -8. Sixteen hours (and three microwave dinners) later, it arrives in Tokyo where the ZD is +9. What is the aircraft's local time of arrival? ____ ## Assignment Sheet 6-2-3 Sheet 7 of 7 ## **Answers:** | 1. | D | |----|---| | 2. | D | | _ | | 3. A 4. B 5. A 6. B 7. C 8. D 9. B 10. A 11. C 12. B 13. 28° 27.2'N, 091° 37.0'W 14. $MC = 142^{\circ}$ DIST = 14NM 15. 29° 37.0'N, 091° 39.2'W 16. 28° 07.9'N, 091° 09.0'W 17. 28° 15.8'N, 092° 06.8'W 18. $MC = 356^{\circ}$ DIST = 50.5NM 19. MC = 259° DIST = 61.5NM 20. 29° 22.5'N, 091° 23.2'W $MC = 356^{\circ}$ DIST = 40.6NM 21. $MC = 190^{\circ}$ DIST = 39NM 22. $MC = 315^{\circ}$ DIST = 30.5NM 23. $MC = 173^{\circ}$ DIST = 34NM 24. $MC = 334^{\circ}$ DIST = 70.6NM 25. 31° 15.6'N, 094° 07.7'W (BRIDGE) 26. 31° 31.5'N, 093° 48.0'W (BRIDGE) 27. 31° 32.8N, 095° 13.6'W (TOWN OF WECHES) 28. 31° 05.5'N, 092° 03.7'W (MARKSVILLE AIRFIELD) 29. 31° 43.0'N, 091° 32.5'W (TOWN OF CLAYTON) 30. 2220 LMT 31. 1830 LMT 32. 1010 GMT 33. 2252 GMT 34. 1712 LMT 35. 1115 GMT 36. 1110 LMT 37. 0215 LMT 38. 2030 LMT 39. 0120 GMT 40. 1200 LMT 41. YES! (1700 LMT) 42. 1335 LMT 43.0600 LMT 44. 2200 LMT Sheet 1 of 1 #### **OUTLINE SHEET 6-3-1** #### CR-3 AIR NAVIGATION COMPUTER (CALCULATION SLIDE) #### A. INTRODUCTION To be proficient at air navigation, all aviators must possess some basic mathematical skills. Using specialized, handheld electronic calculators could solve all problems associated with air navigation; however, these problems can be solved quickly and accurately with the CR-3 air navigation computer. The advantages of the CR-3 over electronic calculators are twofold: reliability and cost. #### **B. ENABLING OBJECTIVES** - 4.8 DESCRIBE the CR-3 air navigation computer, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.9 SOLVE rate problems using the CR-3 computer to a tolerance of +/- one unit on the logarithmic scale, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.10 SOLVE fuel conversion problems using the CR-3 computer to a tolerance of +/- one unit on the logarithmic scale, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 #### C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Care and Components of the CR-3 - 4. Ratio Problems - 5. Time, Speed, Distance - 6. Fuel Consumption #### **INFORMATION SHEET 6-3-2** #### CR-3 AIR NAVIGATION COMPUTER (CALCULATION SLIDE) #### A. INTRODUCTION To be proficient at air navigation, all aviators must possess some basic mathematical skills. Using specialized, handheld electronic calculators could solve all problems associated with air navigation; however, these problems can be solved quickly and accurately with the CR-3 air navigation computer. The advantages of the CR-3 over electronic calculators are twofold: reliability and cost. #### **B. REFERENCES** - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION #### **CARE AND COMPONENTS OF CR-3** #### **CARE** The plastic CR-3 computer is fragile and must be cared for properly by observing the following guidelines: - 1. Do not leave the computer in direct sunlight such as on the dashboard of a car or a windowsill. Heat will cause the computer to warp. - 2. Use only a soft lead pencil or a felt tip pen on the wind side of the computer. - 3. Keep the computer clean. Avoid getting dirt between the discs of the computer. Figure 3-1 CR-3 Calculator Side #### **COMPONENTS** Figure 3-1 shows the major components of the calculator side of the CR-3. The warrior-aviator must become familiar with this computer in order to be proficient at air navigation. The CR-3 is a Information Sheet 6-3-2 Sheet 2 of 19 two-sided disk with a circular slide rule, or calculator, on the front and a graphic display for wind calculations on the back. #### **OUTER AND INNER WHEELS** The circular slide rule side includes a rotatable disc attached to a base. Both the base and the rotatable disc have graduated logarithmic scales. The scale on the base is most often used to represent distance and fuel and is referred to as the OUTER wheel (white scale) (Figure 3-2). The rotatable disc of the computer is referred to as the INNER wheel (gray scale) and is primarily used for TIME (Figure 3-3). If the "10" indexes are lined up on the outer and inner wheels, you will notice that the two scales are identical (Figure 3-4). Figure 3-2 Outer Wheel Figure 3-3 Inner Wheel Figure 3-4 Outer/Inner Scales Information Sheet 6-3-2 Sheet 3 of 19 Both scales are graduated with unequally spaced values printed from 10 to 90. The CR-3 uses a "floating decimal" (Figure 3-5) which allows the printed numbers to represent different values depending on where the decimal point or succeeding zero is placed. For example, the number 21 may stand for .21, 2.1, 21, 210 or 2100. Not all numbers are printed on the scales, therefore, the values will have to be read accurately between the printed numbers. Notice that there are 9 "tick marks" (Figure 3-6) between each whole number from 10 to 15. Since the tick marks make a total of ten divisions between the whole numbers, each tick mark represents a difference of one. Because of the floating decimal, the first mark to the right of ten could represent 10.1, 101, or 1010. There are 4 tick marks between each whole number from 15 to 30. In this case, each tick mark represents a difference of two, therefore the first unmarked value to the right of 15 could represent 15.2, 152, or 1520. There is a single tick mark between the whole numbers between 30 and 60 with each representing a difference of five. The first unmarked value after the 30 could represent 30.5, 305, or 3050. When it is necessary to read an unmarked value between two of the marked divisions, determine the values of the tick marks and interpolate. The value 151 would be found halfway between 15 and the first tick mark past 15. 307 would be Figure 3-6 Tick Marks slightly less than half way between the first mark past 30 and the next large mark. Information Sheet 6-3-2 Sheet 4 of 19 # RATE INDEX This index will be used for most problems that involve time. Note that this mark is found where the 60 would normally be on the inner wheel. It is used for any problem where the unit of time being considered is an hour (Figure 3-7). #### HIGH SPEED RATE INDEX This index will be used for problems that involve short amounts of time (typically seconds). Note that this mark is found where the 36 is on the inner wheel (because 3600 sec equals 1 hour). It is used for any problem where the unit of time being considered is 1 to 2 minutes or less (Figure 3-8). #### **UNIT INDEX** This index is used for all mathematical functions (e.g. ratios) that do not involve time. It is found at the Ten position on both wheels (Figure 3-9). #### **CURSOR HAIRLINE** The primary function of the cursor hairline is to input temperature into the CR-3 for calculating true Air Speed (see chapter 4). Its secondary purpose is to help with interpolation of any values derived from the inner and outer wheels. Figure 3-7 Rate Index Figure 3-8 High Speed Rate Index Figure 3-9 Unit Index Information Sheet 6-3-2 Sheet 5 of 19 #### TIME #### MINUTES AND HOURS Both the outer and inner scales are the same. The outer scale can be referred to as the DISTANCE scale and the inner scale called the TIME scale. In using the TIME scale, the large numbers near the edge of the inner scale usually represent minutes. The floating decimal concept still applies; for example the 15 value on the minute scale could represent 1.5, 15, or 150 minutes. Notice it DOES NOT directly represent seconds. Note that the value of 60 minutes has a special meaning; it equals one hour. Because it is an often-used point it has been specially marked with a triangle, called the RATE INDEX. Realize this is 0.6, 6.0, or 60 MINUTES, NOT 1. Beneath this scale is a smaller scale marked in hours. This scale directly reads hour values that correspond to the minute scale. For example 120 minutes = 2:00 hours and 1200 minutes = 20:00 hours. The hour circle converts this for us. Below the number 12 (Figure 3-10) the value 2:00 is found above the hour circle and 20:00 below the circle. Figure 3-10 Minutes to Hours The small marks between the hour values on the upper side of the hour circle represent ten-minute intervals. As an example, notice the value 15 (here 150 minutes) on the TIME (minutes) scale (Figure 3-10) and directly below it is 2:30, or 2 hours and 30 minutes, on the hour scale. Notice the small mark to the right of the 2:30, directly below the number 16 (here 160 minutes). This represents the next ten-minute interval, or 2:40 (2 hours and 40 minutes). The value 168 on the minute scale will read 2:48, or 2 hours and 48 minutes on the hour scale. #### SECONDS AND MINUTES Seconds have the same relationship to minutes as minutes do to hours (60 seconds is one minute; 60 minutes is one hour). Since the numbers and relationships are the same, the same scales can be used to measure these values; just remember which units are being used. For example the TIME scale is assigned to read seconds, the hour circle will read minutes. Referencing the above example, with 150 minutes on the TIME scale, directly below it is 2:30, or 2 hours and 30 minutes, on the hour scale. If 150 seconds is on the TIME scale, directly below it is 2:30, or 2 minutes and 30 seconds, on the hour circle (which now reads minutes).
Information Sheet 6-3-2 Sheet 6 of 19 There is a special mark (the RATE INDEX) for 60 minutes because it equates to one hour. Since one hour is an important value, a special mark denoting the second's equivalent to one hour is needed when the TIME scale represents seconds. Since there are 3600 seconds in one hour this special mark is at the "36". The very small arrow with "SEC" beneath it is referred to as the "seconds bug" or "high speed" index (Figure 3-11). This "high speed" index is used when the large numbers on the TIME scale are to represent SECONDS (rather than minutes), and the inner hour circle is to represent minutes (rather than hours). The "high speed" index is used in rate problems involving seconds as the time flown or to be flown. Figure 3-11 Indexes ## CONVERSION OF HOURS, MINUTES, AND SECONDS Using the minute can make conversion of minutes to hours, or vice versa, and hour scales on the TIME scale (inner wheel). The answers are read directly from either the minute or the hour scales. EXAMPLE: Convert 3 hours and 10 minutes into total minutes. Solution: - 1. Find 3:10 on the hour circle (inner scale). - 2. Above the 3:10 read "19" (or 190) (Figure 3-12). Answer: 190 minutes Conversions of minutes (and decimal minutes) to seconds, or vice versa, can be made by using the small "SEC" arrow and the rate index () which are located on the TIME scale, see Figure 3-13. Figure 3-12 Hours to Minutes Information Sheet 6-3-2 Sheet 7 of 19 Place the rate index (inner scale) under the number of minutes on the outer (white) scale and read the number of seconds opposite the "SEC" arrow on the same scale. EXAMPLE: Convert 3.7 minutes to seconds. #### Solution: 1. Place the rate index (on the inner scale) opposite 37 (which represents 3.7 minutes) on the outer scale. 2. On the DISTANCE (outer) scale, opposite the "SEC" arrow on the TIME (inner) scale, read the number of seconds (Figure 3-13). Answer: 222 seconds. In addition, use the innermost scale on the time scale to convert to minutes and seconds. Look under 222 and read 3 minutes 42 seconds. Figure 3-13 Hours to Minutes Information Sheet 6-3-2 Sheet 8 of 19 #### **RATIOS** Ratios, or proportions, are the basis for the multiplication and division processes on the CR-3 computer and are used in solving problems of time, distance, speed, and fuel consumption/conversion. If any two of three components are known, the third component can be easily computed. One problem in solving a ratio for the unknown factor is determining the position of the decimal point. Since each value on the computer represents a multiple of ten, a rough estimate should be made of the answer in order to interpret where to place the decimal point. The DISTANCE and TIME scales are identical and designed in such a manner that when a ratio or fraction is set up on the scales, all other possible fractions of equal value are automatically set up. Distance will be placed, or read, on the DISTANCE (outer) scale, and time will likewise be placed, or read, on the TIME (inner) scale. Setting them up on the DISTANCE and TIME scales exactly as they would be written on a piece of paper solves ratios. There are some important rules to remember when setting up ratio problems on the whiz wheel: - 1. Units of measure in the numerators must be the same (i.e. nm or pounds). - 2. Units of measure in the denominators must be the same (i.e. minutes or seconds). - 3. The units are placed on the whiz wheel with numerator values on the outside and denominator values on the inner wheel. EXAMPLE: In the following ratio, solve the unknown factor (X): $$\frac{1}{2} = \frac{8}{X}$$ Figure 3-14 Ratio 1 Information Sheet 6-3-2 Sheet 9 of 19 Solution: The unknown, X, can be found by transferring the ratio directly to the outer and inner scales as described below. - 1. First, estimate the answer: Since 8 is about eight times 1, then "X" is about eight times larger than 2 or about 16. - 2. Set up the CR-3 computer with 10 on the outer scale over 20 on the inner scale. - 3. Next, find the factor 80 on the outer scale and read the value for "X" directly below on the inner scale. The number below 80 is 16. This could represent 1.6, 16, 160 or 1600. Answer: Since you have "estimated" your answer to be approximately 16, you now read the value for "X" as 16 (Figure 3-15). Figure 3-15 Ratio 2 Remember that determining the correct position for the decimal point is a major challenge in solving a ratio for the unknown value. Always estimate the approximate answer before interpreting the computer. #### TIME - SPEED - DISTANCE In aviation the unit of measurement for distance is usually the nautical mile, which is 6080 feet. Time is measured in hours, minutes and seconds. Speed is in nautical miles per hour or "knots." On the CR-3 computer, the time scale is on the moveable disk (inner scale) and is graduated in minutes. Since most TIME, SPEED, DISTANCE, and FUEL CONSUMPTION problems are expressed in units per hour, we will use the RATE INDEX. Time, speed, distance, and fuel consumption problems are simply ratios that deal with time (rates). The unknown values are found by transferring the known values of the ratio directly to the outer (DISTANCE) and inner (TIME) scales. Keep in mind that the RATE INDEX () represents 60 minutes and is used as the basis for what is happening per hour. Information Sheet 6-3-2 Sheet 10 of 19 # ESTIMATING TOOLS Rule of 60 One tool used to estimate time/speed/distance problems is known as the rule of 60. Stated simply, aircraft ground speed divided by 60 equals the distance (nm) traveled in one minute (Table 3-1). For example at 60kts the aircraft travels one nm a minute, at 120kts it travels two nm's a minute, etc. #### Rule of 6 A related rule, the rule of 6 states that 1/10th of the aircraft's ground speed is the distance it will travel in six minutes. For example, at 300kts the aircraft will travel 30nm in six minutes. #### **TIME** The time required to cover a specified distance at a given (known) speed can be expressed in the following formula: ## <u>SPEED</u> = D<u>ISTANCE</u> RATE INDEX TIME Knots to NM/Min Decimal Minute to Seconds Table 3-1 Knots to NM per Minute/Decimal Minutes to Seconds When the known ground speed, or estimated ground speed, is placed over the RATE INDEX (60 minute mark) on the computer, any given distance on the outer (DISTANCE) scale will match with the correct time on the inner (TIME) scale. The distance flown, or the time it will take to fly a given distance in any given time, will be easily determined. NOTE: It is often necessary to convert from decimal minutes to minutes and seconds (or viceversa). Table 3-1 shows the conversion. This table also applies to decimal hours and minutes as well. Information Sheet 6-3-2 Sheet 11 of 19 #### **EXAMPLE:** How long will it take to fly 350 NM at a ground speed of 150 kts? #### Solution: - 1. Estimate the answer. In two hours, 300 nm will be flown (150 x 2); so, it will take slightly over 2 hours (120 minutes). - 2. Set the ground speed of 150 knots over the RATE INDEX (60 minutes) on the TIME scale (Figure 3-16). - 3. On the outer (DISTANCE) scale, find the distance of 350 nautical miles (the 35). - 4. Now read directly below 35 (350 NM). The time en route will be 140 minutes or 2 hours and 20 minutes (2 + 20) (Figure 3-17). Answer: 2 hours and 20 minutes At times, it may be necessary to work small, or short, distances and times (low level/high speed navigation). The answer will be a short period of time, in minutes or minutes and seconds. The smaller index marked "SEC" (located at figure "36" on the inner, or TIME, scale) is referred to as the "seconds bug" or "high speed index." The "high speed index" converts a 60-minute (one-hour) time period into 3600 seconds. When the "high speed index" is placed beneath the speed on the DISTANCE scale, any distance read on the Figure 3-16 Time 1 Figure 3-17 Time 2 DISTANCE scale will correspond to time in seconds on the TIME scale. Information Sheet 6-3-2 Sheet 12 of 19 #### **EXAMPLE:** Given: Ground speed 250 KTS Distance to travel 5 NM Find: Time to fly #### Solution: 1. Estimate the answer. Convert 250 Kts to 4 NM/Min (round 250 to 240 and divide by 60). The time will be slightly over 1 minute. - 2. Place the 250 KTS ground speed information on the DISTANCE scale directly above the "SEC" index (or high- speed index) on the TIME scale. - 3. Opposite the 50 (representing 5 NM) on the DISTANCE scale, read the time to the station on the TIME scale. (Figure 3-18) Answer: 72 seconds, or 1 minute and 12 seconds (1:12). (Figure 3-19) ## **SPEED** If time and distance are known, simply transfer the ratio, or proportion, information to the DISTANCE and TIME scales of the CR-3 computer and read the unknown factor of speed over the rate index. Use the same formula previously discussed: Figure 3-19 Time 4 Information Sheet 6-3-2 Sheet 13 of 19 ## SPEED = DISTANCE RATE INDEX TIME Given: Distance covered. 30 NM Find: Ground Speed #### Solution: 1. Estimate the answer. 11 goes into 60 approximately 6 times, so the speed is approximately 6 x 30 or 180 kts. $\frac{\text{Xnm}}{60 \text{min}} = \frac{30 \text{nm}}{11 \text{min}}$ - 2. Locate the distance (30 NM) on the outer (DISTANCE) scale and place the time flown (11 minutes) directly under the distance on the inner (TIME) scale. (Figure 3-20) - 3. Locate the "RATE INDEX" () on the inner scale. (Figure 3-21) - 4. Above the "RATE INDEX" read the ground speed. Because of the estimation of 180, the correct answer can easily be determined. Answer: 164 KTS ground speed. #### **DISTANCE** Solutions to problems requiring a distance flown, or a distance to be flown, over a known period of time may be solved in a manner similar to solving problems of time. Again, it is a process of setting up a ratio using the DISTANCE and TIME scales and the basic SPEED, DISTANCE, TIME equation. #### **EXAMPLE** Given: Ground speed 240
KTS Time flown 19 minutes Find: Distance flown Solution: Figure 3-20 Speed 1 Figure 3-22 Speed 3 Information Sheet 6-3-2 Sheet 14 of 19 1. Estimate the answer. 60 goes into 240 4 times. 19 times 4 is approximately 80. - 2. Set the RATE INDEX () on the inner (TIME) scale opposite the ground speed (240 KTS) on the outer (DISTANCE) scale. (Figure 3-22) - 3. Look on the TIME scale over 19 minutes and read the distance directly above. (Figure 3-23) Answer: 76 NM #### **FUEL CONSUMPTION** Solving problems of fuel consumption is similar to problems of speed, time, or distance. Both are rate problems. The only difference is that the unit that changes over a given amount of time is now fuel instead of distance. Again, it is a simple matter of setting up ratios on the Figure 3-23 Speed 4 computer and solving for the unknown factor. The outer scale is now used as the FUEL scale. The solution is still a matter of transferring the ratio, or proportion, to the outer/inner scales of the computer and reading the unknown factor (fuel consumed or rate of consumption). Use the formula: ## <u>FUEL FLOW</u> = <u>FUEL CONSUMED</u> RATE INDEX TIME Since fuel is measured in pounds, the outer scale on the CR-3 becomes the FUEL (in pounds) scale while the inner scale remains the TIME scale. Examples of fuel consumption problems follow. EXAMPLE ONE: Finding amount of fuel consumed. Given: Fuel consumption...1000 pph Time flown...1 hour and 45 minutes Find: Fuel consumed #### Solution: 1. Estimate the answer. Since the total time is just under 2 hours the answer should be a little under 2000 (2 hr x 1000 # / hr), approximately 1800. Figure 3-24 Fuel Consumption 1 Information Sheet 6-3-2 Sheet 15 of 19 2. Place the RATE INDEX () located on the TIME (inner) scale under the 10 (1000 # / hr) on the FUEL (outer) scale. (Figure 3-24) 3. Convert 1 hour 45 minutes to 105 (60 + 45) on the TIME (inner) scale and read the amount of fuel consumed on the FUEL (outer) scale. (Figure 3-25) Answer: 1750 pounds of fuel consumed Figure 3-25 Fuel Consumption 2 Information Sheet 6-3-2 Sheet 16 of 19 EXAMPLE TWO: Finding fuel flow. Given: Time flown 45 sec Fuel consumed . . . 117 pounds Find: Fuel flow. Solution: - 1. Estimate the answer. Since the time is less than a minute, it is logical to assume after a minute the fuel burned would be about 150 #, so a good estimate would be about 9000 #. - 2. Find 11.7 (117 #) on the FUEL (outer) scale and place it over 45 seconds on the TIME (inner) scale (Figure 3-26). 3. Opposite the High-Speed Rate Index (3600 sec) located on the TIME (inner) scale, read the amount of fuel consumed in one hour on the outer (FUEL) scale (Figure 3-27). Answer: 9350 pounds per hour. ## **FUEL CONVERSION** Fuel is sold in gallons, but all fuel computations in the aircraft reference pounds. This is because it is important to know the total weight of the aircraft. Therefore, the conversion from gallons to pounds is a necessary skill in aviation. To convert gallons Figure 3-26 Fuel Flow 1 Figure 3-27 Fuel Flow 2 of fuel to pounds, the weight of a single gallon must be known. On a standard day, most aviation fuel weighs between 6.5 and 6.9 pounds per one gallon. This ratio of 6.X to 1 is used in the formula: $\frac{\text{FUEL WEIGHT}}{1 \text{ GALLON}} = \frac{\text{TOTAL POUNDS}}{\text{TOTAL GALLONS}}$ Information Sheet 6-3-2 Sheet 17 of 19 Note that the outer scale on the CR-3 remains the FUEL scale, and the inner scale now becomes the GALLONS scale. It is important to remember that the 10 on the inner wheel represents 1-gallon. Since time is not involved in this type of problem, DO NOT use the rate index! Also remember that there will always be more pounds than gallons. EXAMPLE ONE: Finding total fuel weight. Given: Total gallons 525 gallons Fuel weight. . . . 6.6 lbs per gallon Find: Total fuel weight. #### Solution: - 1. Estimate the answer. Round the fuel weight up to 7 pounds per gallon. Round the total gallons down to 500. 7 x 500 is 3500 (pounds). - 2. Find 66 (6.6#) on the POUNDS (outer) scale and place it over 10 on the GALLONS (inner) scale (Figure 3-28). - 3. Find 525 (525 gallons) on the inner (gallons) scale and read the amount of total fuel weight on the outer (pounds) scale (Figure 3-29). Answer: 3460 pounds of fuel. Since mission requirements are based on pounds of fuel, the aircrew will need to convert pounds to gallons in order to request fuel for the aircraft. This is because fuel trucks can only reference gallons. Use the above formula, inserting the fuel weight on the outer wheel above the 10, and find the gallons needed below the pounds required. Figure 3-28 Fuel Conversion 1 Figure 3-29 Fuel Conversion 2 Information Sheet 6-3-2 Sheet 18 of 19 EXAMPLE TWO: Finding gallons required. Given: Total pounds 6000 pounds Fuel weight 6.4 pounds per gallon Find: Total gallons required. Solution: - 1. Estimate the answer. Round the fuel weight down to 6 pounds per gallon. Divide 6000 by 6. Approximately 1000 gallons. - 2. Find 64 (6.4#) on the POUNDS (outer) scale and place it over 10 on the GALLON (inner) scale (Figure 3-30). - 3. Find 60 (6000 pounds) on the POUNDS (outer) scale and read the amount of total gallons on the GALLONS (inner) scale (Figure 3-31). Answer: 938 gallons of fuel. EXAMPLE Three: Finding pounds consumed. Given: Ground Speed 425 Knots Fuel Flow 9000 lbs/hour Distance Traveled 11 nm Find: Total pounds consumed. #### Solution: 1. Estimate the answer. At 7 nm/min it will take roughly 90 seconds to fly 11 nm. At a fuel flow of 9000 #/hour about 220 lbs of fuel will be burned. Figure 3-30 Fuel Conversion 3 Figure 3-31 Fuel Conversion 4 - 2. Find 42.5 (425 Kts) on the DISTANCE (outer) scale and place it over 36 (3600 seconds) on the TIME (inner) scale (Figure 3-32). - 3. Find 11 (11 nm) on the DISTANCE (outer) scale and read the amount of total seconds on the TIME (inner) scale. 11nm will take 93 seconds of flight time (Figure 3-33). - 4. Find 90 (9000 #) on the POUNDS (outer) scale and place it over 36 (3600 seconds) on the TIME (inner) scale (Figure 3-34). - 5. Find 93 (93 seconds) on the TIME (inner) scale and read the amount of total pounds on the POUNDS (outer) scale (Figure 3-35). Answer: 232 pounds of fuel. Q-9B-0020L Sheet 19 of 19 TRAINEE GUIDE Information Sheet 6-3-2 Figure 3-32 Fuel Conversion 5 Figure 3-34 Fuel Conversion 7 Figure 3-33 Fuel Conversion 6 Figure 3-35 Fuel Conversion 8 Sheet 1 of 12 #### **ASSIGNMENT SHEET 6-3-3** #### CR-3 AIR NAVIGATION COMPUTER (CALCULATION SLIDE) #### A. INTRODUCTION To be proficient at air navigation, all aviators must possess some basic mathematical skills. Using specialized, handheld electronic calculators could solve all problems associated with air navigation; however, these problems can be solved quickly and accurately with the CR-3 air navigation computer. The advantages of the CR-3 over electronic calculators are twofold: reliability and cost. #### **B. ENABLING OBJECTIVES** #### C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 3 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 4 ## D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. Sheet 2 of 12 # TIME Find the TIME, given the SPEED and DISTANCE: | DISTANCE (NM) | SPEED (knots) | ANSWERS (hr/min/sec) | |---------------|---------------|----------------------| | 1. 310 | 220 | | | 2. 45 | 430 | | | 3. 215 | 165 | | | 4. 125 | 545 | | | 5. 1500 | 330 | | | 6. 5 | 210 | | | 7. 2 | 415 | | | 8. 15 | 620 | | | 9. 435 | 145 | | | 10. 2600 | 360 | | | 11. 85 | 510 | | | 12. 560 | 405 | | | 13. 1.5 | 110 | | | 14. 95 | 225 | | | 15. 135 | 450 | | | 16. 1450 | 300 | | | 17. 850 | 185 | | | 18. 3 | 215 | | | 19. 90 | 640 | | | 20. 500 | 260 | | | 21. 117 | 415 | | | 22. 720 | 150 | | | 23. 510 | 380 | | | 24. 480 | 530 | | | 25. 3.5 | 650 | | | | | | Assignment Sheet 6-3-3 Sheet 3 of 12 - 26. How much time will it take a P-3 "Orion" aircraft to cover 230 nautical miles at a speed of 315 knots? - a. 12 min - b. 35 min - c. 44 min - d. 73 min - 27. How much time will it take a T-45 "Goshawk" to go 5 nautical miles at a speed of 420 knots? - a. 72 sec - b. 55 sec - c. 43 sec - d. 35 sec - 28. Flying at 365 knots an aircraft would cover 2000 nautical miles in ______. - a. 12 hrs - b. 9 hrs 10 min - c. 7 hrs 30 min - d. 5 hrs 28 min - 29. How much time would it take an aircraft to cover 215 nautical miles at 160 knots? - a. 0 hrs 45 min - b. 0 hrs 57 min - c. 1 hr 5 min - d. 1 hr 21 min - 30. At a speed of 120 knots, a T-6A "Texan II" aircraft could cover 340 nautical miles in - a. 17 minutes - b. 1 hour, 8 minutes - c. 2 hours, 50 minutes - d. 3 hours, 30 minutes TRAINEE GUIDE Q-9B-0020L Sheet 4 of 12 Assignment Sheet 6-3-3 # **SPEED** Find the SPEED, given the DISTANCE and TIME: | DISTANCE (NM) | TIME (hr+min+sec) | ANSWERS (knots) | |---------------|--------------------|-----------------| | 1. 425 | 1+50+00 | (| | 2. 300 | 2+00+00 | | | 3. 20 | 0+30+00 | | | 4. 600 | 2+30+00 | | | 5. 1200 | 4+00+00 | | | 6. 15 | 0+10+00 | | | 7. 285 | 0+50+00 | | | 8. 5 | 0+00+20 | | | 9. 1000 | 3+20+00 | | | 10. 22 | 0+15+00 | | | 11. 3 | 0+00+15 | | | 12. 300 | 1+00+00 | | | 13. 550 | 3+00+00 | | | 14. 3000 | 7+00+00 | | | 15. 300 | 0+45+00 | | | 16. 195 | 0+30+00 | | | 17. 1600 | 4+00+00 | | | 18. 5.5 | 0+00+45 | | | 19. 625 | 1+50+00 | | | 20. 60 | 0+20+00 | | | 21. 375 | 1+40+00 | | | 22. 98 | 0+19+00 | | | 23. 525 | 1+10+00 | | | 24. 200 | 1+40+00 | | | 25. 3 | 0+00+31 | | | | | | Assignment Sheet 6-3-3 Sheet 5 of 12 - 26. A T-6B "Texan II" aircraft travels 420 nautical miles in 2 hours 30 minutes. What is its speed? a. 160 knots b. 168 knots c. 280 knots d. 360 knots 27. If a T-39 "Sabreliner" traveled 184 nautical miles in 35
minutes, how fast was it flying? a. 525 knots b. 315 knots c. 114 knots d. 107 knots 28. In 23 seconds an F/A-18 "Hornet" covered 3.5 nautical miles. What was its speed? a. 236 knots b. 395 knots c. 546 knots d. 912 knots 29. If an P-3 "Orion" covered 375 nautical miles in 1 hour 30 minutes, how fast was it flying? a. 415 knots b. 250 knots c. 200 knots d. 174 knots 30. An EA-6B "Prowler" flying at _____ knots would cover 950 nautical miles in 1 hour 50 - a. 380 knots minutes. - b. 520 knots - c. 865 knots - d. 950 knots Assignment Sheet 6-3-3 Sheet 6 of 12 # DISTANCE Find the DISTANCE, given the SPEED and TIME: | SPEED (knots) | TIME (hr+min+sec) | ANSWERS (NM) | |---------------|-------------------|--------------| | 1. 220 | 2+00+00 | , | | 2. 175 | 1+30+00 | | | 3. 310 | 0+40+00 | | | 4. 420 | 0+45+00 | | | 5. 250 | 0+00+13 | | | 6. 195 | 7+00+00 | | | 7. 620 | 1+30+00 | | | 8. 725 | 1+40+00 | | | 9. 230 | 0+00+50 | | | 10. 385 | 2+30+00 | | | 11. 435 | 0+17+00 | | | 12. 150 | 0+37+00 | | | 13. 240 | 1+10+00 | | | 14. 400 | 0+00+45 | | | 15. 520 | 1+30+00 | | | 16. 210 | 0+50+00 | | | 17. 340 | 0+30+00 | | | 18. 175 | 0+22+00 | | | 19. 700 | 4+00+00 | | | 20. 210 | 1+50+00 | | | 21. 120 | 0+00+42 | | | 22. 625 | 2+00+00 | | | 23. 430 | 0+40+00 | | | 24. 195 | 0+00+37 | | | 25. 300 | 5+20+00 | | | | | | # Assignment Sheet 6-3-3 Sheet 7 of 12 - 26. How far would a T-45 "Goshawk" travel in 20 minutes if its speed was 360 knots? - a. 12 NM - b. 72 NM - c. 102 NM - d. 120 NM - 27. At 210 knots, how far would an aircraft travel in 2 hours 20 minutes? - a. 765 NM - b. 490 NM - c. 470 NM - d. 294 NM - 28. A T-6B "Texan II" aircraft traveling for 45 seconds at 210 knots would cover what distance? - a. 2.6 NM - b. 9.4 NM - c. 12.4 NM - d. 15.8 NM - 29. An EA-18G "Growler" aircraft traveling at 420 knots would cover what distance in 1 hour 40 minutes? - a. 700 NM - b. 429 NM - c. 352 NM - d. 340 NM - 30. What distance would an aircraft traveling at 320 knots cover in 4 hours 30 minutes? - a. 2400 NM - b. 2300 NM - c. 1440 NM - d. 810 NM Q-9B-0020L Sheet 8 of 12 TRAINEE GUIDE Assignment Sheet 6-3-3 # FUEL CONSUMPTION | FUEL FLOW | TIME | FUEL QUANTITY | |------------------------|----------------------|---------------| | 1. 1500 lbs | 1+25+00 | lbs | | 2. 175 lbs | 0+17+00 | lbs | | 3. 550 lbs | 3+30+00 | lbs | | 4. 2900 lbs | 2+54+00 | lbs | | 5lbs | 1+15+00 | 2500 lbs | | 6. 270 lb s | | 3250 lbs | | 7. 1400 lbs | | 15000 lbs | | 8 lbs | $\overline{0+45+00}$ | 117 lbs | | 9. 1870 lbs | 2+10+00 | lbs | | 10. 770 lbs | | 2800 lbs | | 11 lbs | 6+30+00 | 25000 lbs | | 12. 325 lbs | 4+27+00 | lbs | | | 5+50+00 | lbs | | 14 lbs | 0+36+00 | 256 lbs | | 15. 425 lbs | | 250 lbs | | 16 lbs | 3+00+00 | 756 lbs | | 17. 1100 lbs | 2+15+00 | lbs | | 18. 4300 lbs | | 7500 lbs | | 19 lbs | 7+00+00 | 1250 lbs | | 20 lbs | 1+25+00 | 335 lbs | | 21. 655 lbs | 4+45+00 | lbs | | 22. 1750 lbs | 10+30+00 | lbs | | 23. 350 lbs | | 935 lbs | | 24 lbs | 3+35+00 | 1675 lbs | | 25 lbs | 0+53+00 | 850 lbs | # Assignment Sheet 6-3-3 Sheet 9 of 12 - 26. An EA-6B "Prowler" aircraft is burning fuel at a rate of 5,000 lbs per hour. How many flight hours will the aircraft fly if it has 18,000 lbs onboard? - a. 3 hours 10 minutes - b. 3 hours 36 minutes - c. 6 hours - d. 2 hours 56 minutes - 27. If a KC-130 "Hercules" aircraft consumed 76,000 lbs of fuel in a 3 hour 30 minute flight, what was the rate of fuel consumed per hour? - a. 270 lbs - b. 2,170 gals - c. 2,170 lbs - d. 21,700 lbs - 28. An F-35C "Lightning II" aircraft burns 5000 lbs per hour. What will be the total fuel consumed if it flies for 2 hours 40 minutes? - a. 1,400 lbs - b. 130 lbs - c. 1,360 lbs - d. 13,300 lbs - 29. An F/A-18C "Hornet" aircraft carries 12,000 lbs of fuel internally. What is the total time it can fly if it burns fuel at a rate of 4,250 lbs per hour? - a. 2 hours 50 minutes - b. 4 hours 40 minutes - c. 1 hour 50 minutes - d. 2 hours 05 minutes - 30. A T-34 "Mentor" aircraft consumes 250 lbs per hour. What will be the fuel consumed if it flies for 2 hours 10 minutes? - a. 500 lbs - b. 540 lbs - c. 325 lbs - d. 253 lbs Assignment Sheet 6-3-3 Sheet 10 of 12 # **FUEL CONVERSIONS** | Fuel Weight | Fuel (lbs.) | Fuel (gallons) | |-------------|-------------|----------------| | 1. 6.4 #/g | 2340# | gal | | 2. 6.6 #/g | 4200# | gal | | 3. 6.8 #/g | # | 2200 gal | | 4. 6.5 #/g | 14000# | gal | | 5. 6.6 #/g | # | 640 gal | | 6. 6.5 #/g | <u></u> # | 1200 gal | | 7. 6.8 #/g | 8750# | gal | | 8. 6.5 #/g | # | 3000 gal | | 9. 6.8 #/g | 12600# | gal | | 10. 6.5 #/g | # | 860 gal | Assignment Sheet 6-3-3 Sheet 11 of 12 # **Answers:** | TIME (hr+min+sec) | SPEED (KTS) | DISTANCE (NM) | |--------------------------|-------------|---------------| | 1. 1+24+33 | 1. 232 | 1. 440 | | 2. 0+06+17 | 2. 150 | 2. 262 | | 3. 1+18+11 | 3. 40 | 3. 207 | | 4. 0+13+48 | 4. 240 | 4. 315 | | 5. 4+32+43 | 5. 300 | 5. 0.9 | | 6. 0+01+26 | 6. 90 | 6. 1368 | | 7. 0+00+17 | 7. 342 | 7. 930 | | 8. 0+01+27 | 8. 900 | 8. 1210 | | 9. 3+00+00 | 9. 300 | 9. 3.2 | | 10. 7+13+20 | 10. 88 | 10. 960 | | 11. 0+10+00 | 11. 720 | 11. 123 | | 12. 1+22+58 | 12. 300 | 12. 93 | | 13. 0+00+49 | 13. 184 | 13. 280 | | 14. 0+25+20 | 14. 430 | 14. 5 | | 15. 0+18+00 | 15. 400 | 15. 780 | | 16. 4+50+00 | 16. 390 | 16. 175 | | 17. 4+35+40 | 17. 400 | 17. 170 | | 18. 0+00+50 | 18. 440 | 18. 64 | | 19. 0+08+26 | 19. 340 | 19. 2800 | | 20. 1+55+23 | 20. 180 | 20. 384 | | 21. 0+16+54 | 21. 225 | 21. 1.4 | | 22. 4+48+00 | 22. 309 | 22. 1250 | | 23. 1+20+30 | 23. 450 | 23. 286 | | 24. 0+54+20 | 24. 120 | 24. 2 | | 25. 0+00+19 | 25. 348 | 25. 1600 | | 26. C | 26. B | 26. D | | 27. C | 27. B | 27. B | | 28. D | 28. C | 28. A | | 29. D | 29. B | 29. A | | 30. C | 30. B | 30. C | | | | | Assignment Sheet 6-3-3 Sheet 12 of 12 ## **FUEL CONSUMPTION** - 1. 2124# - 2.49.5# - 3. 1920# - 4.8400# - 5. 2000PPH - 6. 12+02+00 - 7. 10+42+00 - 8. 156PPH - 9. 4050# - 10. 3+38+00 - 11. 3850PPH - 12. 1445# - 13.9700# - 14. 427PPH - 15. 0+36+00 - 16. 252PPH - 17. 2470# - 18. 1+45+00 - 19. 178PPH - 20. 236PPH - 21. 3120# - 22. 18400# - 23. 2+42+00 - 24. 468PPH - 25.960PPH - 26. B - 27. D - 28. D - 29. A - 30. B #### **FUEL CONVERSION** - 1. 365 GAL - 2. 638 GAL - 3. 14950# - 4. 2158 GAL - 5. 4230# - 6. 7800# - 7. 1285 GAL - 8. 19500# - 9. 1855 GAL - 10.5600# Sheet 1 of 2 #### **OUTLINE SHEET 6-4-1** #### **AIRSPEEDS** #### A. INTRODUCTION A clear understanding of the airspeed of an aircraft and how it relates to pressure and altitude is essential in order to effectively navigate. This chapter will explain the theory, principles, and techniques required to accurately calculate required airspeed. #### **B. ENABLING OBJECTIVES** - 2.339 DESCRIBE the effect of air density on true airspeed and Mach number, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.42 DEFINE indicated airspeed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.43 DEFINE calibrated airspeed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.45 DEFINE true airspeed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.46 DEFINE ground speed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.47 DESCRIBE the factors affecting the different types of airspeed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.340 CALCULATE true airspeed using the CR-3 air navigation computer given indicated airspeed, calibration data, altimeter setting, indicated altitude, and outside air temperature to within +/- 2 KTS, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.341 CALCULATE Mach number using the CR-3 air navigation computer given indicated airspeed, calibration data, altimeter setting, indicated altitude, and outside air temperature to within +/-.01, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Outline Sheet 6-4-1 Sheet 2 of 2 ## C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Density - 4. Airspeed Definitions - 5. Calibrated Airspeed - 6. Equivalent Airspeed - 7. True Airspeed - 8. CR-3 Familiarization - 9. True Airspeed Calculation - 10. Mach Number Calculation Sheet 1 of 11 #### **INFORMATION SHEET 6-4-2** #### **AIRSPEEDS** #### A. INTRODUCTION A clear understanding of the airspeed of an aircraft and how it relates to pressure and altitude is essential in order to effectively navigate. This chapter will explain the theory, principles, and techniques required to accurately calculate required airspeed. #### B. REFERENCES - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION #### ALTITUDE THEORY Altitude is defined as height above a given reference. Altitude relates to the navigation problem because of the corresponding density changes with changes in altitude. These pressure and temperature changes at different altitudes affect True Airspeed, thereby influencing the DR plot. All aircraft use a barometric altimeter to determine height. Some aircraft use additional types of altimeters, including encoding and radar altimeters that are specialized equipment used for mission requirements. The barometric altimeter is an aneroid barometer which converts pressure differences to a direct readout in feet. Altimeter readings must include a reference in order to be useful. Altimeter readings for a barometric altimeter use the current barometric pressure at Mean Sea Level (MSL) as the reference. Prior to an aircraft's departure, the airfield tower controller tells the pilot the local altimeter setting, which is the barometric pressure at Mean Sea Level for the airfield. Airfields are normally higher than Mean
Sea Level. When the pilot sets the local altimeter setting in the Kollsman window of the aircraft's altimeter, the altimeter will indicate the airfield's elevation above Mean Sea Level. For example, if the aircraft is in Denver, Colorado, the altimeter will indicate approximately 5,600 feet while the aircraft is still on the ground since the elevation at Denver is 5,600 feet MSL. The altitude shown on the altimeter is called Indicated Altitude. Altimeters are subject to errors caused by installation, mechanical misalignment, positioning of the pressure-sensing ports on the aircraft, and age/wear. These errors are grouped into one category called Instrument Error. Instrument error is determined by noting the difference between known airfield elevation and Indicated Altitude (on altimeter) prior to takeoff when the current airfield altimeter setting is SET. For example, an aircraft altimeter showing an Indicated Altitude of 80 feet at NAS Pensacola, where the airfield elevation is 30 feet MSL, would have an instrument error of +50 feet. You cannot correct for instrument error; and for this reason, if the total altimeter error is in excess of Information Sheet 6-4-2 Sheet 2 of 11 75 feet, the aircraft is considered unsafe for IFR flight. Indicated altitude corrected for instrument error is called Calibrated Altitude. #### **DENSITY** In order to calculate True Altitude, which is the height of the aircraft above Mean Sea Level (MSL), calibrated altitude must be corrected for density. The two major factors affecting air density are temperature and pressure. #### **TEMPERATURE** Outside Air Temperature (OAT) or Indicated Air Temperature (IAT) is measured with aircraft instruments. These temperatures may or may not be corrected for aircraft instrument error. Aircraft instruments are calibrated for standard lapse rates. An incorrect instrument indication will result if the temperature deviates from the standard. For every 11°C that the temperature varies from the standard lapse rate, the altimeter will be in error 4%. If the air is colder than the standard atmosphere, the aircraft will be lower than the altimeter indicates; if the air is warmer than standard, the aircraft will be higher than the altimeter indicates. For purposes of this course always assume a standard lapse rate. Temperature's effects on pressure and density translate directly to corresponding effects on TAS. #### **PRESSURE** When an aircraft flies from one place to another at a constant indicated altitude, it is flying along a surface of constant pressure. As the surface pressure varies, so do the heights of the pressure levels aloft. Figure 4-1 shows the path of an aircraft as it follows a constant pressure surface. As the surface pressure is reduced (all other conditions remaining the same), the whole column of air aloft is lowered, causing an aircraft flying at a particular pressure level to descend to a lower altitude. Figure 4-1 Path of Aircraft Following a Constant Pressure Surface Information Sheet 6-4-2 Sheet 3 of 11 The current altimeter setting must be obtained by radio throughout the flight and it is imperative to receive an altimeter setting from the tower at your destination prior to landing. Without a current altimeter setting, a pilot flying toward an area where the pressure is decreasing would be at an MSL altitude lower than indicated. A change in pressure of 0.10 in-Hg will change the altimeter reading 100 feet. A basic rule for altimeter errors is, when flying from point to point and your flight takes you from: High pressure to Low pressure, your altimeter indicates High but the aircraft is actually Lower #### "High to Low LOOK OUT BELOW" On the other hand, if you fail to reset your altimeter with a current altimeter setting and you are flying from a low-pressure area, then: Low pressure to High pressure, your altimeter indicates Low but the aircraft is actually Higher #### "Low to High PLENTY OF SKY" #### STANDARD DAY A "Standard Day" is defined as a barometric pressure of 29.92 inches of mercury (Hg) and the Outside Air Temperature (OAT) is +15 degrees centigrade at Mean Sea Level (MSL). As the aircraft increases in altitude, temperature and pressure should decrease. Theoretically, these decreases in pressure and temperature will occur at the "Standard Lapse Rate" (Figure 4-2), which is a temperature decrease of 2 degrees centigrade and pressure drop of 1" Hg for each 1,000 feet increase in altitude. Information Sheet 6-4-2 Sheet 4 of 11 Figure 4-2 Standard Lapse Rate On a Standard Day, the Calibrated Altitude and True Altitude will always be the same. Unfortunately, the Standard Day conditions and the Standard Lapse Rate rarely occur due to temperature inversions, high and low pressure fronts, and other weather occurrences. Atmospheric temperature and pressure vary continuously, and you must correct for these changes by using your CR-3 computer. ## REVIEW OF ALTITUDE DEFINITIONS <u>Indicated altitude</u>: (IA) is the altitude reading on the aircraft altimeter when it is set to the local area (nearest station) barometric pressure (altimeter setting). Calibrated altitude: (CA) is indicated altitude corrected for instrument and installation errors. Pressure altitude: (PA) is the calibrated altitude corrected for the difference between local atmospheric pressure and the standard datum plane, 29.92. Pressure altitude is the reference used to calculate True Airspeed. <u>True Altitude</u>: (TA) is the actual height of the aircraft above Mean Sea Level (MSL). Found by correcting CA for density. TA is very important because terrain elevation on navigational charts is labeled in feet MSL. Absolute Altitude: Actual height of the aircraft above the surface of the earth. Also known as altitude Above Ground Level (AGL). Information Sheet 6-4-2 Sheet 5 of 11 Figure 4-3 shows a comparison of these altitudes. Figure 4-3 Altitudes #### **AIRSPEED** Airspeed is defined as the speed of an aircraft relative to the air, or the earth's surface. Airspeed is obtained by means of a pitot-static system on the aircraft. Differences in pressure caused by the aircraft movement are measured by the system and displayed on a cockpit airspeed indicator. #### **DEFINITIONS:** <u>Indicated Airspeed</u>: (IAS) is the airspeed read directly from the aircraft Airspeed Indicator. <u>Calibrated Airspeed</u>: (CAS) is Indicated Airspeed corrected for instrument installation error. Airspeed indicator correction information is generally displayed on an airspeed calibration card placed in the aircraft cockpit. Calibrated airspeed data should be used in place of Indicated airspeed where possible. <u>True Airspeed</u>: (TAS) is Calibrated Airspeed corrected for air density (pressure and temperature) and is the speed of the aircraft through the air mass. Ground Speed: (GS) is the actual speed of the aircraft relative to the ground and is found by correcting TAS for head/tail wind. Information Sheet 6-4-2 Sheet 6 of 11 #### TRUE AIRSPEED True Airspeed (TAS) is the speed of the aircraft through the air mass and is not affected by wind speed or direction. The airspeed indicator in the cockpit gives IAS information which must be corrected for instrument error and density to determine TAS (Figure 4-4). To convert IAS to TAS, first determine Calibrated Airspeed (CAS). CAS is the result of IAS corrected for instrument error. This instrument error is recorded in the cockpit in the form of an Airspeed Calibration Card which gives what the airspeed indicator reads (IAS) and what it should read (CAS). For a given IAS ("X"), TAS will generally increase with an increase in altitude. Figure 4-4 True Airspeed Information Sheet 6-4-2 Sheet 7 of 11 #### PRESSURE ALTITUDE Pressure Altitude (PA) is the measurement of atmospheric pressure from the "Standard Datum Plane." To find Pressure Altitude, first determine the Calibrated Altitude. Calibrated Altitude is Indicated Altitude PLUS or MINUS instrument error. Example follows: Next, find the difference between the given altimeter setting and the Standard Datum Plane. If the local altimeter setting was 31.12" and the Standard Datum Plane is 29.92", the problem would look like this: Local Altimeter 31.12" Standard Datum Plane - 29.92" 1.20" (pressure difference) Then, change the pressure difference (1.20") to altitude (feet) using the standard lapse rate of 1" Hg (mercury) = 1,000 feet. A difference of 1.20" Hg would equal 1,200 feet. Finally, you must either ADD or SUBTRACT the pressure difference (1,200 feet) from the Calibrated Altitude (10,000 feet). If the given altimeter setting is less than 29.92", you ADD. If the given altimeter is greater than 29.92", (like the above example) you SUBTRACT: Calibrated Alt 10,000 feet Pressure Difference - 1,200 feet Pressure Altitude 8,800 feet #### NOTES: - 1. To assist in determining whether to add or subtract the pressure difference, apply the term "LAGS" which stands for: - If the given altimeter setting is Less (than 29.92"), then ADD - If the given altimeter setting is Greater (than 29.92"), then SUBTRACT L ess A dd G reater S ubtract 2. While in flight, Pressure Altitude can be read right off the aircraft altimeter IF 29.92" is dialed into the Kollsman Window AND there is NO instrument error. Information Sheet 6-4-2 Sheet 8 of 11 #### CALIBRATED AIRSPEED Given an IAS, it will be necessary to calculate the CAS because it is a more accurate value to use when calculating the TAS. Looking at the instrument calibration card (Figure 4-5), an IAS of 255 knots equates to a CAS of 252 knots. Since there is not a 255 IAS available on the calibration card it is necessary to use the closest value of 253 IAS. At 253 knots IAS the correction factor is -3 knots to arrive at a CAS of 250 knots. Therefore, the same correction factor, -3 knots, would be applied to an IAS of 255 to arrive at a CAS of 252. This would be an example of correcting for instrument error. Once CAS is calculated, the TAS can be solved for
using the CR3 navigation computer. Figure 4-5 Airspeed Calibration Card Information Sheet 6-4-2 Sheet 9 of 11 ## SOLVING FOR TRUE AIRSPEED SITUATION: What is the TAS of an aircraft at 10,000' CA, if its IAS is 255 kts and the OAT is -20° C. - 1. Set the CAS from the problem (convert IAS to CAS) over the PA (which was calculated in the previous problem). Be careful, the scales increase in opposite directions! (i.e. 10000 is RIGHT of 15000) (Figure 4-6). - 2. Go to the large window at 12 o'clock to input the temperature. Be extra careful to set the green hairline at the intersection of the MACH spiral (black line running left to right) and the temperature curve (black line running top to bottom) representing -20°. Now follow the green line down to the TAS scale and read the value, in this case, 272 kts (Figure 4-7). Figure 4-6 TAS 1 (CAS/PA) #### MACH NUMBER As an airplane flies, velocity and pressure changes create sound waves in the airflow around the airplane (Figure 4-8). Since these sound waves travel at the speed of sound, an airplane flying at subsonic airspeeds will travel slower than the sound waves and allow them to dissipate. However, as the airplane nears the speed of sound, these pressure waves pile up forming a wall of pressure, called a shock wave, which also travels at the speed of sound. As long as the airflow velocity on the airplane remains below the local speed of sound (LSOS), the airplane will not suffer the effects of compressibility. Therefore, it is appropriate to compare the two velocities. Mach Number (M) is the ratio of the airplane's True Airspeed to the local speed of sound. Information Sheet 6-4-2 Sheet 10 of 11 Figure 4-7 TAS 2 TEMP/TAS/MACH SPIRAL Figure 4-8 Mach Number # $M = \frac{TAS}{LSOS}$ #### SOLVING FOR MACH AIRSPEED SITUATION: What is the Mach Number of the same aircraft at 10,000' CA, IAS of 255 kts and the OAT still -20° C. - 1. Set the CAS from the problem (remember to convert IAS to CAS if necessary) over the PA (which, again, may have to be calculated as in the previous problem). Remember, the scales increase in opposite directions! (Figure 4-9). - 2. Go to the large window at 12 o'clock where TAS was found. Read the Mach Number directly under the TAS scale at the Mach Number index, in this case, .448 mach. Note that at a constant Mach Number the corresponding TAS is temperature dependent (Figure 4-10). Figure 4-9 Mach 1 Q-9B-0020L Sheet 11 of 11 Information Sheet 6-4-2 Figure 4-10 Mach 2 Sheet 1 of 6 #### **ASSIGNMENT SHEET 6-4-3** #### **AIRSPEEDS** #### A. INTRODUCTION A clear understanding of the airspeed of an aircraft and how it relates to pressure and altitude is essential in order to effectively navigate. This chapter will explain the theory, principles, and techniques required to accurately calculate required airspeed. #### **B. ENABLING OBJECTIVES** #### C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 4 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 5 ## D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. Assignment Sheet 6-4-3 Sheet 2 of 6 A. Using the CR-3 computer, fill in the missing parameters. | _ | CALT | ALTIM | TEMP | PALT | CAS | TAS | |----|-------|-------|------|-------|-----|-----| | 1 | N/A | N/A | 10 | 10000 | 177 | | | 2 | N/A | N/A | 10 | 9000 | 177 | | | 3 | N/A | N/A | 10 | 10240 | 160 | | | 4 | N/A | N/A | -12 | 19300 | 303 | | | 5 | N/A | N/A | 14 | 5940 | 126 | | | 6 | N/A | N/A | -2 | 8320 | 151 | | | 7 | N/A | N/A | -10 | 10000 | 177 | | | 8 | N/A | N/A | 0 | 10000 | 177 | | | 9 | N/A | N/A | -5 | 8500 | 137 | | | 10 | N/A | N/A | 20 | 3720 | 219 | | | 11 | 10000 | 29.92 | 10 | | 177 | | | 12 | 10000 | 30.92 | 10 | | 177 | | | 13 | 11000 | 30.68 | 10 | | 160 | | | 14 | 19500 | 30.12 | -12 | | 303 | | | 15 | 6000 | 29.98 | 14 | | 126 | | | 16 | 8000 | 29.60 | -2 | | 151 | | | 17 | 10000 | 29.92 | -10 | | 177 | | | 18 | 10000 | 29.92 | 0 | | 177 | | | 19 | 8000 | 29.42 | -5 | | 137 | | | 20 | 3500 | 29.70 | 20 | | 219 | | | 21 | 10000 | 28.92 | 10 | | 177 | | | 22 | 8000 | 30.20 | -7 | | 163 | | | 23 | 7500 | 28.92 | 5 | | 182 | | | 24 | 12000 | 30.42 | -5 | | 180 | | | 25 | 2750 | 29.90 | 10 | | 180 | | | 26 | 6000 | 30.92 | -10 | | 219 | | | 27 | 8500 | 29.50 | -15 | | 203 | | | 28 | 11500 | 29.92 | 20 | | 298 | | | 29 | 4550 | 27.92 | -20 | | 300 | | | 30 | 14925 | 28.50 | 0 | | | 301 | | 31 | 10500 | 30.42 | 5 | | | 322 | | 32 | 1700 | 28.42 | -5 | | | 283 | | 33 | 8500 | 27.62 | 10 | | | 232 | | 34 | 3000 | 28.92 | -10 | | | 199 | | 35 | 2380 | 29.02 | -20 | | | 311 | | 36 | 6300 | 28.02 | 0 | | | 308 | | 37 | 5600 | 29.92 | 0 | | | 279 | | 38 | 8000 | 29.82 | 15 | | | 290 | | 39 | 7500 | 29.95 | 10 | | | 274 | Assignment Sheet 6-4-3 Sheet 3 of 6 | 40 | 6800 | 30.15 | -10 | | 250 | |----|-------|-------|-----|-----|-----| | 41 | 15000 | 28.95 | -20 | 450 | | | 42 | 14500 | 30.01 | 0 | 500 | | | 43 | 8900 | 29.99 | 5 | 475 | | | 44 | 6900 | 30.25 | 10 | 460 | | | 45 | 6500 | 29.95 | -25 | 355 | | | 46 | 20000 | 29.92 | -20 | 274 | | | 47 | 15000 | 29.99 | 15 | 315 | | | 48 | 1900 | 30.05 | 10 | 495 | | | 49 | 18000 | 30.55 | 0 | 800 | | | 50 | 30000 | 29.63 | -5 | 500 | | - B. Solve the following problems using the given preflight information. - 51. Calibrated altitude is 15,000 feet. OAT is -15 degrees C. Altimeter setting is 29.92 inches Hg. To maintain a TAS of 210 knots, what INDICATED airspeed must be flown? - a. 152 knots - b. 161 knots - c. 166 knots - d. 171 knots - 52. An aircraft is flying at 200 knots CAS, pressure altitude 16,000 feet, and OAT is -10 degrees C. What is the TAS? - a. 245 knots - b. 253 knots - c. 262 knots - d. 270 knots - 53. SITUATION: An aircraft's calibrated altitude is 15,000 feet, OAT is -15°C, and the altimeter setting is 29.92 inches Hg. What INDICATED airspeed must be flown to maintain 300 knots TAS? - a. 232 knots - b. 239 knots - c. 243 knots - d. 249 knots Assignment Sheet 6-4-3 Sheet 4 of 6 54. SITUATION: An aircraft is flying at 162 knots CAS, 16,000 feet pressure altitude, and an OAT of -10° C. What is the TAS? - a. 124 knots - b. 157 knots - c. 167 knots - d. 207 knots 55. SITUATION: An aircraft's CAS is 120 knots, the altimeter indicates 15,000 feet (zero error), OAT is -30°C, and the pressure altitude is 14,500 feet. What is the aircraft's true airspeed? - a. 138 knots - b. 144 knots - c. 150 knots - d. 161 knots # **Answers:** | | CALT | ALTIM | TEMP | PALT | CAS | TAS | |----|-------|-------|------|-------|-----|-----| | 1 | N/A | N/A | 10 | 10000 | 177 | 208 | | 2 | N/A | N/A | 10 | 9000 | 177 | 205 | | 3 | N/A | N/A | 10 | 10240 | 160 | 190 | | 4 | N/A | N/A | -12 | 19300 | 303 | 396 | | 5 | N/A | N/A | 14 | 5940 | 126 | 140 | | 6 | N/A | N/A | -2 | 8320 | 151 | 170 | | 7 | N/A | N/A | -10 | 10000 | 177 | 201 | | 8 | N/A | N/A | 0 | 10000 | 177 | 205 | | 9 | N/A | N/A | -5 | 8500 | 137 | 154 | | 10 | N/A | N/A | 20 | 3720 | 219 | 233 | | 11 | 10000 | 29.92 | 10 | 10000 | 177 | 209 | | 12 | 10000 | 30.92 | 10 | 9000 | 177 | 205 | | 13 | 11000 | 30.68 | 10 | 10240 | 160 | 190 | | 14 | 19500 | 30.12 | -12 | 19300 | 303 | 396 | | 15 | 6000 | 29.98 | 14 | 5940 | 126 | 140 | | 16 | 8000 | 29.60 | -2 | 8320 | 151 | 170 | | 17 | 10000 | 29.92 | -10 | 10000 | 177 | 201 | | 18 | 10000 | 29.92 | 0 | 10000 | 177 | 204 | | 19 | 8000 | 29.42 | -5 | 8500 | 137 | 154 | | 20 | 3500 | 29.70 | 20 | 3720 | 219 | 234 | | 21 | 10000 | 28.92 | 10 | 11000 | 177 | 213 | | 22 | 8000 | 30.20 | -7 | 7720 | 163 | 179 | | 23 | 7500 | 28.92 | 5 | 8500 | 182 | 207 | | 24 | 12000 | 30.42 | -5 | 11500 | 180 | 212 | | 25 | 2750 | 29.90 | 10 | 2770 | 180 | 186 | | 26 | 6000 | 30.92 | -10 | 5000 | 219 | 226 | | 27 | 8500 | 29.50 | -15 | 8920 | 203 | 223 | | 28 | 11500 | 29.92 | 20 | 11500 | 298 | 360 | | 29 | 4550 | 27.92 | -20 | 6550 | 300 | 309 | | 30 | 14925 | 28.50 | 0 | 16345 | 233 | 300 | | 31 | 10500 | 30.42 | 5 | 10000 | 280 | 322 | | 32 | 1700 | 28.42 | -5 | 3200 | 282 | 283 | | 33 | 8500 | 27.62 | 10 | 10800 | 194 | 232 | | 34 | 3000 | 28.92 | -10 | 4000 | 195 | 199 | | 35 | 2380 | 29.02 | -20 | 3280 | 320 | 311 | | 36 | 6300 | 28.02 | 0 | 8200 | 278 | 308 | | 37 | 5600 | 29.92 | 0 | 5600 | 263 | 279 | | 38 | 8000 | 29.82 | 15 | 8100 | 255 | 290 | | 39 | 7500 | 29.95 | 10 | 7470 | 245 | 274 | Assignment Sheet 6-4-3 | 40 | 6800 | 30.15 | -10 | 6570 | 235 | 250 | |----|-------|-------|-----|-------|-----|-----| | 41 | 15000 | 28.95 | -20 | 15970 | 450 | 520 | | 42 | 14500 | 30.01 | 0 | 14410 | 500 | 576 | | 43 | 8900 | 29.99 | 5 | 8830 | 475 | 512 | | 44 | 6900 | 30.25 | 10 | 6570 | 460 | 486 | | 45 | 6500 | 29.95 | -25 | 6470 | 355 | 358 | | 46 | 20000 | 29.92 | -20 | 20000 | 274 | 359 | | 47 | 15000 | 29.99 | 15 | 14930 | 315 | 399 | | 48 | 1900 | 30.05 | 10 | 1770 | 495 | 483 | | 49 | 18000 | 30.55 | 0 | 17370 | 800 | 865 | | 50 | 30000 | 29.63 | -5 | 30290 | 500 | 716 | B. - 51. \mathbf{C} - 52. В - 53. D - 54. D - 55. В Sheet 1 of 1 #### **OUTLINE SHEET 6-5-1** #### PREFLIGHT WINDS #### A. INTRODUCTION The path of an aircraft over the earth's surface is determined by two factors: (1) direction of the aircraft through the air mass and (2) direction of the air mass across the earth's surface. The motion of the air mass is called wind. This assignment will aid in understanding the effects of wind on an aircraft's flight path. #### **B. ENABLING OBJECTIVES** - 4.14 DESCRIBE the preflight wind triangle, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.15 CALCULATE true heading, crab angle, and groundspeed using the CR-3 air navigation computer given true airspeed, true course, and preflight wind direction and velocity to within +/- 3 degrees and +/-3 KTS (wind velocity less than 70 KTS), or +/-5 degrees and +/- 5 KTS (wind velocity greater than 70 KTS), in a classroom, in accordance with
Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 #### C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Preflight Winds - 4. Vector Analysis and the Wind Triangle - 5. Wind Analysis - 6. CR-3 Wind Side Components - 7. Calculating Preflight Headings and Groundspeeds Sheet 1 of 13 #### **INFORMATION SHEET 6-5-2** #### PREFLIGHT WINDS #### A. INTRODUCTION The path of an aircraft over the earth's surface is determined by two factors: (1) direction of the aircraft through the air mass and (2) direction of the air mass across the earth's surface. The motion of the air mass is called wind. This assignment will aid in understanding the effects of wind on an aircraft's flight path. #### **B. REFERENCES** - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION #### WIND THEORY Wind is the movement of an air mass across the earth's surface. Its direction is expressed as the direction from which the wind blows in degrees true (i.e., the origin of the wind). For example, a 045° wind is a wind originating from the northeast and blowing toward the southwest. The wind's velocity is always given in nautical miles per hour (knots). Winds are reported in one of two ways: TRUE winds and MAGNETIC winds. En route winds received from the forecaster are TRUE winds and are taken from the Winds-Aloft Charts and Teletype Winds-Aloft Forecasts. The surface winds received from Airport Traffic Control Towers and Approach/Departure Control are MAGNETIC winds that coincide with the magnetic direction of the runways. The Wind Side of the CR-3 circular computer is designed to aid the Warrior- Navigator in the solution of wind problems. The Wind Side of the CR-3 can be used to solve for navigation problems with the use of Ground Speed, courses, and distances. Think of the air mass as a large balloon. If an aircraft is inside the balloon, it may travel at any speed and in any direction. As long as the balloon does not move over the ground, the aircraft's motion (speed and direction) over the ground is the same as its motion inside the balloon. Once the balloon begins moving, however, the aircraft's motion over the ground is a combination of its motion inside the balloon and the motion of the balloon over the ground. Information Sheet 6-5-2 Sheet 2 of 13 For example, Figure 5-1 shows a balloon with a width of 50 nm (mass of air) moving east at 50 knots. If an aircraft were flying eastward at 50 knots inside the balloon, at the end of one hour, it will have traveled a total of 100 nm toward the east. Figure 5-1 On the other hand, if an aircraft moves eastward at 50 knots while the balloon moves westward at 50 knots the aircraft will not move over the ground (Figure 5-2). Figure 5-2 The aircraft will, however, travel from one side of the balloon to the other regardless of the fact that the balloon is moving westward at the same rate the aircraft is flying eastward. Information Sheet 6-5-2 Sheet 3 of 13 If the balloon moves in a direction other than the desired course (Figure 5-3), the aircraft's path over the ground will be the combination of the path of the balloon (air mass) and the path of the aircraft through that balloon (air mass) (Figure 5-4). It is clear that when the movement of the air mass is parallel to the flight path, simple addition or subtraction of the wind can determine the speed over the ground. However, if the movement of the air mass is at an angle to the flight path, as it usually is, vector addition must be used to determine the movement over the ground. Information Sheet 6-5-2 Sheet 4 of 13 #### VECTOR ANALYSIS AND THE WIND TRIANGLE A vector possesses both direction and magnitude (or speed for our purpose). Vectors can represent wind movement and aircraft movement through the air and over the ground. Three vectors comprise the Wind Triangle or, as it is sometimes called, the Navigation Triangle. The three Figure 5-5 vectors of the Wind Triangle are the: AIR VECTOR: the aircraft's direction and speed represented by True Heading (TH) and True Airspeed (TAS). GROUND VECTOR: the aircraft's intended or actual flight path (True Course or Track) and Groundspeed (GS). WIND VECTOR: the wind's Direction (DIR) and Velocity (VEL). The AIR VECTOR (TH and TAS) is displayed as in Figure 5-5. Adding the WIND VECTOR (Direction and Velocity) to the AIR Vector would look like Figure 5-6. Figure 5-6 Information Sheet 6-5-2 Sheet 5 of 13 The resultant vector is the GROUND VECTOR that represents True Course or Track and Ground Speed. The result is the Wind Triangle (Figure 5-7). The direction of the ground vector is the aircraft's intended or actual path over the ground and the magnitude is the aircraft's groundspeed. The tail of the ground vector is our origin, and the head is the aircraft's current or predicted ground position. On the Wind Triangle, the angle formed by the Air and Ground vectors is called crab angle (Figure 5-7). **Drift angle** is the difference between true heading and track measured either left or right of true heading. The aircraft will drift off- course to the left due to the northeasterly wind blowing from 030° at 30 knots (030/30). Instead of accepting this off-course drift, the aircraft must be turned into the wind to compensate for the right crosswind. **Crab angle** is the amount of correction an aircraft must be Figure 5-7 Figure 5-8 Crab Angle turned into the wind in order to maintain the desired course. It is equal in magnitude but opposite in direction, to the Drift Angle (Figure 5-8). If given any two sides of the wind triangle, the third side can be found by using the CR-3 computer. Information Sheet 6-5-2 Sheet 6 of 13 #### COMPONENTS OF THE CR-3 WIND SIDE Figure 5-9 THE CR-3 AIR NAVIGATION COMPUTER (WIND SIDE COMPONENTS) #### AIRSPEED SCALE The outer most scale (Figure 5-9) represents True Airspeed (TAS) when initially setting up the problem, but also represents crosswind component values when computing crab/drift angles. #### TRUE AIRSPEED INDEX This index, located on the second disk (Figure 5-9), is where the TAS is applied to the problem. TAS is required to accurately compute the crab/drift angle. #### TRUE COURSE INDEX The True Course Index is used to input the True Course (TC) in a preflight wind calculation, or Track (TK) in an in-flight wind calculation (Figure 5-9). Remember that either of these directions can represent the direction of the Ground Vector (Figure 5-7). Information Sheet 6-5-2 Sheet 7 of 13 #### CRAB AND DRIFT ANGLE SCALE The numbers on the edge of the middle disc (Figure 5-9) are used for either CRAB or DRIFT angle, depending on the type of problem. #### **COMPASS ROSE** The Compass Rose is a standard 360 degree scale showing one-degree increments (Figure 5-9). This disk also includes range rings that correspond with the wind scales and direction lines that originate from the center. #### COMPUTER WIND SCALES There are two wind scales depicted on the horizontal and vertical lines that radiate from the center of the computer (Figure 5-9). These scales are printed in black. The large scale (which represents speeds from 0 to 80 knots) is used if the wind is less than 60 knots while the smaller scale (higher speeds, from 0 to 160) is used if the wind is greater than 60 knots. Once a desired scale is chosen, that same scale MUST be used throughout the entire problem. Care should be taken not to mix the two scales within the same problem. #### 10% RULE If the crosswind component is 10% of the True Airspeed, the Crab Angle should be 6 degrees. This is a consistent relationship throughout the range of airspeeds that apply to tactical aviation. Therefore, as the crosswind component increases the corresponding crab angle will also (Figure 5-10). For example, with a TAS of 150 and a crosswind of 30 kts the crab will equal 12 degrees (twice the 6 degrees from 10% of the TAS). Summarizing; If, Crosswind = 10% of TAS, Then, Crab angle = 6° Figure 5-10 Ten Percent Rule Information Sheet 6-5-2 Sheet 8 of 13 #### **QUARTERING ANALYSIS** Figure 5-11 Quartering Analysis Given a True Course and a preflight wind quartering analysis can be used to estimate what type of quartering wind the aircraft will experience (i.e. Right Head Wind). Once the quartering wind has been determined True Heading can be compared to True Course, and Ground Speed can be compared to True Airspeed (Figure 5-11) A list of the steps to calculate predicted True Heading and Ground speed are: #### (ESTIMATE!) - 1. Plot the wind. - 2. Set the TAS. - 3. Set the TC (confirm estimation). - 4. Note the crosswind component. - 5. Note the headwind/tailwind component. - 6. Apply headwind/tailwind (ground speed) (estimate the crab angle using the 10% rule). - 7. Determine the crab angle. - 8. Apply the crab angle (true heading). - 9. Verify the estimate! Information Sheet 6-5-2 Sheet 9 of 13 #### CALCULATING PREFLIGHT HEADINGS AND GROUNDSPEEDS Things to remember: erase the wheel completely before starting each problem, take time to analyze the type of wind you have, and estimate its effects. SITUATION: Your mission requires you to fly a true course of 218° while maintaining 325 kts TAS. If the winds are forecasted to be from 100° at 40 kts, what TH and GS will you fly? Estimate first! Sketch out the winds in relation to the desired TC. In this case, there is a Left Tailwind. This will produce the following: GS > TAS and TH < TC (Figure 5-12). 1. Plot the wind by setting the wind direction (100°) on the inner wheel on top of the TC arrow (Figure 5-13). Figure 5-12 Preflight Wind Estimation 2. Choose the appropriate scale (lg. or sm.) and mark the velocity (40 kts) with a dot. Circle the dot to make it more visible (Figure 5-13). Figure 5-13 Preflight Wind Calculation 1 Information Sheet 6-5-2 Sheet 10 of 13 3. Set the TAS (325 kts) over the TAS index on the
outer wheel (use floating decimal) (Figure 5-14). Figure 5-14 Preflight Wind Calculation 2 4. Rotate the inner wheel to set the desired TC (218°) over the TC arrow. NOTE: at this point, check your estimate. Is it a left tailwind? If not, recheck the preceding steps (Figure 5-15). Information Sheet 6-5-2 Sheet 11 of 13 Figure 5-15 Preflight Wind Calculation 3 5. Determine the Crosswind component by drawing a vertical line (up in this case) from the wind dot to the Crosswind scale. Read the velocity in knots (35 kts) remembering to use the same scale as step 2 (Figure 5-16). Figure 5-16 Preflight Wind Calculation 4 Information Sheet 6-5-2 Sheet 12 of 13 6. Determine the HW/TW component in the same manner as step 5 (draw a horizontal line as shown in Figure 5-17) and add or subtract this value (19 kts TW) to the TAS as appropriate to calculate the GS of 344. Figure 5-17 Preflight Wind Calculation 5 Estimate the crab angle using the 10% Rule 7. Take the Crosswind velocity from step 5 (35 kts), input it on the outer wheel (floating decimal), and read the Crab Angle under it on the middle wheel. (Apply the 10% rule below to verify it is a good value. In this case: $$325 \times 10\% = 32.5, 32.5 \text{ kts} \approx 6^{\circ}$$). - 8. The actual crosswind value of 35 should produce a Crab Angle slightly greater than 6°. It does (6.2°, Figure 5-18), but always round to the nearest whole degree. Apply this CA to the TC (+ or -) to determine the TH. In this case, 218° minus 6° equals a TH of 212°. - 9. Verify the estimate! Q-9B-0020L Sheet 13 of 13 Information Sheet 6-5-2 Figure 5-18 Preflight Wind Calculation 6 Sheet 1 of 6 #### **ASSIGNMENT SHEET 6-5-3** #### PREFLIGHT WINDS #### A. INTRODUCTION The path of an aircraft over the earth's surface is determined by two factors: (1) direction of the aircraft through the air mass and (2) direction of the air mass across the earth's surface. The motion of the air mass is called wind. This assignment will aid in understanding the effects of wind on an aircraft's flight path. #### B. ENABLING OBJECTIVES #### C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 5 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 6 # D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. Assignment Sheet 6-5-3 Sheet 2 of 6 A. Using the given winds, determine the predicted TH needed to fly the desired TC and the resulting ground speed. | | TC | TAS | DIS KTS | X-W | C A | TH | H/T | GS | |----|-----|-----|----------|-----|-----|----|-----|----| | 1 | 218 | 325 | 100\40 | | | | | | | 2 | 299 | 164 | 340\ 30 | | | | | | | 3 | 110 | 280 | 330\30 | | | | | | | 4 | 45 | 350 | 180\ 50 | | | | | | | 5 | 40 | 400 | 080\ 100 | | | | | | | 6 | 10 | 170 | 210\ 60 | | | | | | | 7 | 250 | 330 | 210\ 80 | | | | | | | 8 | 292 | 164 | 340\ 32 | | | | | | | 9 | 176 | 150 | 220\ 35 | | | | | | | 10 | 190 | 220 | 010\ 20 | | | | | | | 11 | 325 | 150 | 120\ 20 | | | | | | | 12 | 188 | 234 | 030\ 20 | | | | | | | 13 | 40 | 135 | 270\ 28 | | | | | | | 14 | 54 | 186 | 360∖ 14 | | | | | | | 15 | 253 | 136 | 290\ 33 | | | | | | | 16 | 300 | 175 | 010\ 16 | | | | | | | 17 | 252 | 170 | 198\ 27 | | | | | | | 18 | 127 | 192 | 320\ 18 | | | | | | | 19 | 136 | 204 | 040\ 22 | | | | | | | 20 | 115 | 114 | 310\ 46 | | | | | | | 21 | 87 | 192 | 050\40 | | | | | | | 22 | 294 | 325 | 170\ 48 | | | | | | | 23 | 334 | 100 | 310\33 | | | | | | | 24 | 246 | 165 | 180\ 14 | | | | | | | 25 | 232 | 231 | 250\ 48 | | | | | | | 26 | 265 | 320 | 030\ 50 | | | | | | | 27 | 218 | 257 | 110\ 24 | | | | | | | 28 | 279 | 145 | 310\ 36 | | | | | | | 29 | 65 | 410 | 210\ 25 | | | | | | | 30 | 265 | 253 | 330∖ 28 | | | | | | | 31 | 24 | 230 | 160\ 12 | | | | | | | 32 | 250 | 460 | 010\ 60 | | | | | | | 33 | 115 | 300 | 045\ 10 | | | | | | | 34 | 105 | 200 | 125\95 | | | | | | | 35 | 148 | 150 | 330\ 15 | | | | | | | 36 | 135 | 115 | 125\ 85 | | | | | | | 37 | 127 | 800 | 315\ 75 | | | | | | Q-9B-0020L Sheet 3 of 6 TRAINEE GUIDE Assignment Sheet 6-5-3 | | TC | TAS | DIS KTS | X-W | C A | TH | H/T | GS | |----|-----|-----|---------|-----|-----|----|-----|----| | 38 | 159 | 458 | 050\ 20 | | | | | | | 39 | 220 | 658 | 110\ 65 | | | | | | | 40 | 257 | 521 | 210\ 30 | | | | | | | 41 | 198 | 547 | 310\ 55 | | | | | | | 42 | 248 | 841 | 115\ 45 | | | | | | | 43 | 258 | 621 | 225\ 50 | | | | | | | 44 | 147 | 210 | 135\ 45 | | | | | | | 45 | 159 | 541 | 245\ 35 | | | | | | | 46 | 257 | 687 | 155\ 60 | | | | | | | 47 | 248 | 214 | 265\ 25 | | | | | | | 48 | 205 | 368 | 175∖ 70 | | | | | | | 49 | 159 | 985 | 285\ 15 | | | | | | | 50 | 167 | 623 | 195\ 80 | | | | | | | B. | Solve the | following | problems | using the | given | preflight | information | on | |----|-------------|--------------|----------|-------------|--------|-----------|-------------|-----| | ݐ. | DOI'VE LITE | 10110 111115 | problems | ability and | 51,011 | promisir | minorman | 911 | | 1. The weatherman predicts winds at 25,000' to be 185/50 and at 30,000' to | be 230/80. If your true | |--|-------------------------| | course is 295°, what altitude should be flown to attain the greatest ground sp | peed? | | 2. | The weather | shop predicts | winds to be 230 | /45 with C | OAT of -10° . | You plan to fly | a TC of 330° | at an | |----|---------------|---------------|------------------|-------------|------------------------|-------------------|------------------|-------| | IA | S of 186 kts. | Your planned | calibrated alt w | ill be 15.0 | 00' using the | e local altimeter | r of 27.56. Find | d: | | GROUND SPEED PRESSURE ALT CROSSWIND COMPONENT H/T WIND COMPONENT CRAB ANGLE | CALIBRATED AIRSPEED | | |---|---------------------|--| | PRESSURE ALT CROSSWIND COMPONENT H/T WIND COMPONENT CRAB ANGLE | TRUE AIRSPEED | | | CROSSWIND COMPONENT H/T WIND COMPONENT CRAB ANGLE | GROUND SPEED | | | H/T WIND COMPONENT CRAB ANGLE | PRESSURE ALT | | | CRAB ANGLE | CROSSWIND COMPONENT | | | | H/T WIND COMPONENT | | | TRUE HEADING | CRAB ANGLE | | | | TRUE HEADING | | Q-9B-0020L Sheet 4 of 6 TRAINEE GUIDE Assignment Sheet 6-5-3 | 3. You are planning for your first cross-country flight. Your planned TAS is 300 kts and calibrated altitude is 30,000'. The forecaster is predicting winds to be 280°/22 kts with an OAT of -60°. The loca altimeter will remain constant throughout the route at 29.35". | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | a. What will your IAS be? | | | | | | | | | | | b. If the distance from point A to B on the flight is 349 nm and the measured TC is 345°, what time will you arrive at point B if you depart point A at 1315 GMT? | | | | | | | | | | | 4. As the clock strikes Midnight, and you are just wrapping up your planning for your first cross-country, the phone rings. It's your instructor and he wants to change the destination to San Diego because of the increased training value on the West coast (and the yearly migration of the Gray Whale is at its peak). You amend your indicated altitude now to 39,000' to try to make it in one leg. You are also going to fly a CAS of 190 kts. After letting the phone ring for ten minutes the duty forecaster rolls out of the rack to give you winds aloft of 320°/65 kts, an OAT of -75°, and altimeter remained 29.35". With a course of 275°T, will increasing your altitude help get you to San Diego any faster? (Hint: Ground Speed) | | | | | | | | | | | 5. Weather west of the Rockies causes your cross-country to be canceled so you are rescheduled for a Friday afternoon AIRNAV. You rush home, get a twenty-minute power nap and grab the remote control. The weather channel predicts winds to be 290°/65 kts, with OAT of -45°. You plan to fly a TC of 335°at an IAS of 300kts. Your planned indicated alt will be 11,000' using the local altimeter of 28.56. Find: | | | | | | | | | | | CALIBRATED AIRSPEED TRUE AIRSPEED GROUND SPEED PRESSURE ALT CROSSWIND COMPONENT H/T WIND COMPONENT CRAB ANGLE TRUE HEADING | | | | | | | | | | | 4. As the clock strikes Midnight, and you are just wrapping up your planning for your first cross-country, the phone rings. It's your instructor and he wants to change the destination to San Diego because of the increased training value on the West coast (and the yearly migration of the Gray Whale is at its peak). You amend your indicated altitude now to 39,000' to try to make it in one leg. You are
also going to fly a CAS of 190 kts. After letting the phone ring for ten minutes the duty forecaster rolls out of the rack to give you winds aloft of 320°/65 kts, an OAT of -75°, and altimeter remained 29.35". With a course of 275°T, will increasing your altitude help get you to San Diego any faster? (Hint: Ground Speed) 5. Weather west of the Rockies causes your cross-country to be canceled so you are rescheduled for a Friday afternoon AIRNAV. You rush home, get a twenty-minute power nap and grab the remote control. The weather channel predicts winds to be 290°/65 kts, with OAT of -45°. You plan to fly a TC of 335°at an IAS of 300kts. Your planned indicated alt will be 11,000' using the local altimeter of 28.56. Find: CALIBRATED AIRSPEED GROUND SPEED COMPONENT H/T WIND COMPONENT KAB ANGLE CRAB ANGLE | | | | | | | | | | Assignment Sheet 6-5-3 Sheet 5 of 6 # **Answers:** | | TC | TAS | DIS KTS | X-W | C A | TH | H/T | GS | |----|-----|-----|----------|------|-----|-----|------|-----| | 1 | 218 | 325 | 100\ 40 | 35 L | 6 L | 212 | 19 T | 344 | | 2 | 299 | 164 | 340\ 30 | 20 R | 7 R | 306 | 23 H | 141 | | 3 | 110 | 280 | 330\ 30 | 19 L | 4 L | 106 | 23 T | 303 | | 4 | 45 | 350 | 180\ 50 | 35 R | 6 R | 51 | 35 T | 385 | | 5 | 40 | 400 | 080\ 100 | 64 R | 9 R | 49 | 77 H | 323 | | 6 | 10 | 170 | 210\ 60 | 21 L | 7 L | 3 | 56 T | 226 | | 7 | 250 | 330 | 210\ 80 | 51 L | 9 L | 241 | 61 H | 269 | | 8 | 292 | 164 | 340\ 32 | 24 R | 8 R | 300 | 21 H | 143 | | 9 | 176 | 150 | 220\ 35 | 24 R | 9 R | 185 | 25 H | 125 | | 10 | 190 | 220 | 010\ 20 | 0 R | 0 R | 190 | 20 T | 240 | | 11 | 325 | 150 | 120\ 20 | 8 R | 3 R | 328 | 18 T | 168 | | 12 | 188 | 234 | 030\ 20 | 7 L | 2 L | 186 | 19 T | 253 | | 13 | 40 | 135 | 270\ 28 | 21 L | 9 L | 31 | 18 T | 153 | | 14 | 54 | 186 | 360∖ 14 | 11 L | 3 L | 51 | 8 H | 178 | | 15 | 253 | 136 | 290\ 33 | 20 R | 8 R | 261 | 26 H | 110 | | 16 | 300 | 175 | 010\ 16 | 15 R | 5 R | 305 | 5 H | 170 | | 17 | 252 | 170 | 198\ 27 | 22 L | 7 L | 245 | 16 H | 154 | | 18 | 127 | 192 | 320\ 18 | 4 L | 1 L | 126 | 18 T | 210 | | 19 | 136 | 204 | 040\ 22 | 22 L | 6 L | 130 | 2 T | 206 | | 20 | 115 | 114 | 310\ 46 | 12 L | 6 L | 109 | 44 T | 158 | | 21 | 87 | 192 | 050\ 40 | 24 L | 7 L | 80 | 32 H | 160 | | 22 | 294 | 325 | 170\ 48 | 40 L | 7 L | 287 | 27 T | 352 | | 23 | 334 | 100 | 310\ 33 | 13 L | 8 L | 326 | 30 H | 70 | | 24 | 246 | 165 | 180\ 14 | 13 L | 5 L | 241 | 6 H | 159 | | 25 | 232 | 231 | 250\ 48 | 15 R | 4 R | 236 | 46 H | 185 | | 26 | 265 | 320 | 030\ 50 | 41 R | 7 R | 272 | 29 T | 349 | | 27 | 218 | 257 | 110\ 24 | 23 L | 5 L | 213 | 7 T | 264 | | 28 | 279 | 145 | 310\ 36 | 19 R | 7 R | 286 | 31 H | 114 | | 29 | 65 | 410 | 210\ 25 | 14 R | 2 R | 67 | 20 T | 430 | | 30 | 265 | 253 | 330∖ 28 | 25 R | 6 R | 271 | 12 H | 241 | | 31 | 24 | 230 | 160\ 12 | 8 R | 2 R | 26 | 9 T | 239 | | 32 | 250 | 460 | 010\ 60 | 52 R | 6 R | 256 | 30 T | 490 | | 33 | 115 | 300 | 045\ 10 | 9 L | 2 L | 113 | 3 H | 297 | | 34 | 105 | 200 | 125\ 95 | 32 R | 9 R | 114 | 89 H | 111 | | 35 | 148 | 150 | 330\ 15 | 1 L | 0 R | 148 | 15 T | 165 | | 36 | 135 | 115 | 125\ 85 | 15 L | 7 L | 128 | 84 H | 31 | | 37 | 127 | 800 | 315∖ 75 | 10 L | 1 L | 126 | 74 T | 874 | | 38 | 159 | 458 | 050\ 20 | 19 L | 2 L | 157 | 7 T | 465 | | 39 | 220 | 658 | 110\ 65 | 61 L | 5 L | 215 | 22 T | 680 | | 40 | 257 | 521 | 210\ 30 | 22 L | 2 L | 255 | 20 H | 501 | | 41 | 198 | 547 | 310\ 55 | 51 R | 5 R | 203 | 21 T | 568 | | 42 | 248 | 841 | 115\ 45 | 33 L | 2 L | 246 | 31 T | 872 | | 43 | 258 | 621 | 225\ 50 | 28 L | 3 L | 255 | 42 H | 579 | Assignment Sheet 6-5-3 Sheet 6 of 6 | | TC | TAS | DIR KTS | X-W | C A | TH | H/T | GS | |----|-----|-----|---------|------|-----|-----|------|-----| | 44 | 147 | 210 | 135\ 45 | 9 L | 2 L | 145 | 44 H | 166 | | 45 | 159 | 541 | 245\ 35 | 35 R | 4 R | 163 | 2 H | 539 | | 46 | 257 | 687 | 155\ 60 | 59 L | 5 L | 252 | 12 T | 699 | | 47 | 248 | 214 | 265\ 25 | 7 R | 2 R | 250 | 24 H | 190 | | 48 | 205 | 368 | 175∖ 70 | 35 L | 5 L | 200 | 61 H | 307 | | 49 | 159 | 985 | 285\ 15 | 12 R | 1 R | 160 | 9 T | 994 | | 50 | 167 | 623 | 195\ 80 | 38 R | 3 R | 170 | 71 H | 552 | В. 1. 25000 2. CAS **187** TAS **242** GS **250**PRESSURE ALT **17360** CROSS-WIND **45L**H/T WIND **8T** CRAB **11L** TH **319** 3. A. **197** B. **1427** 4. **Yes**. Your original plan, question #3, had you at 30,000' flying 300kts TAS. Spinning the winds (280°/22 kts) gives you 22 kts of headwind and a resultant ground speed of 278 kts on a course of 275°T. After your instructor changed the plan you chose to go to 39,000', which gave you an OAT of -75° and winds at 320°/65 kts. A CAS of 190 kts at this altitude and temperature gives you a TAS of 337 kts. Spinning the winds gives you 45 kts of headwind resulting in a ground speed of 292 kts on a course of 275°T. Therefore going higher, in this case, gets you to San Diego faster. 5. CAS **298** TAS **322** GS **276** PRESSURE ALT **12360** CROSS-WIND **46L** H/T WIND **46H** CRAB **8**°L TH **327**° Sheet 1 of 1 #### **OUTLINE SHEET 6-6-1** #### IN FLIGHT WINDS #### A. INTRODUCTION The purpose of this assignment sheet is to aid the student in determining wind direction and velocity (the wind vector), given the True Heading and True Airspeed (the air vector), Track and Ground Speed (the ground vector). #### **B. ENABLING OBJECTIVES** - 2.342 DESCRIBE the in-flight wind triangle, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.343 CALCULATE wind direction and velocity using the CR-3 air navigation computer given true heading, true airspeed, track, and groundspeed to within +/- 3 degrees and +/-3 KTS (wind velocity less than 70 KTS), or +/-5 degrees and +/- 5 KTS (wind velocity greater than 70 KTS), in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.344 DETERMINE a TACAN point to point course and distance using the CR-3 air navigation computer given a TACAN radial and DME starting point and destination to within +/- 3 degrees and +/- 1 nautical mile in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 #### C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. In-Flight Wind Theory - 4. Calculating In-Flight Winds - 5. TACAN Point to Point Sheet 1 of 10 #### **INFORMATION SHEET 6-6-2** #### IN FLIGHT WINDS #### A. INTRODUCTION The purpose of this assignment sheet is to aid the student in determining wind direction and velocity (the wind vector), given the True Heading and True Airspeed (the air vector), Track and Ground Speed (the ground vector). #### **B. REFERENCES** - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION While in flight, aircrew will periodically be required to fix the aircraft's position by visual or electronic means. Once fixed, Track (actual flight path) and Ground Speed (distance covered/time) can be determined. With the True Heading and True Airspeed, all the information necessary to compute actual in-flight wind direction and velocity is available. # **IN-FLIGHT WIND THEORY** The actual winds encountered in flight will often differ from the forecast winds. In order to stay on the intended course, the Warrior-Navigator must be able to compute the actual winds aloft using the information gathered during the flight. After takeoff from the departure point and enroute to the destination, the aircraft position will periodically require fixing by either visual or electronic means, or both. Once a fix is determined, Track (TK) as well as the Ground Speed can be calculated. These values, combined with TH and TAS, can then be inputted into the CR-3 to determine actual in-flight winds (Figure 6-1). Information Sheet 6-6-2 Sheet 2 of 10 Figure 6-1 Wind Triangle Information Sheet 6-6-2 Sheet 3 of 10 Consider the following scenario. Preflight planning for the leg from point A to point B produces a TC of 055°T for a distance of 120 nm (Figure 6-2). The preflight wind calculation yields a TH of 052°T and a predicted GS of 255 kts. Once in the air the aircrew sets a TH of 052°T and a TAS of 250 kts and proceeds on his merry way. 15 minutes into the leg the aircrew fixes his position at point C in Figure 6-2. Using plotting skills learned in chapter 2, a track of 045°T and a distance of 55 nm is measured. A quick time, speed, distance calculation reveals a ground speed of 220 knots. Since the Track (045°T) and actual Ground Speed (220 kts) are different from the True Course (055°T) and predicted Ground Speed (255 kts), it becomes evident that actual winds are different from the forecast winds. Now there is enough information to construct two of the three vectors of the wind triangle, the Air and Ground vectors (Figure 6-3), and solve for the actual winds using the CR-3 computer. Figure 6-2 Wind Scenario (not to scale) Figure 6-3 Actual Winds Information Sheet 6-6-2 Sheet 4 of 10 # CALCULATING IN-FLIGHT WINDS To calculate in-flight winds, analyze the affect that the winds have already had and determine the direction of the wind from that analysis. As in chapter 5 preflight wind problems, remember to erase the wheel before starting each new problem. **SITUATION:** The TH of your T-1 is 350° with a TAS of 150 kts. GS has been determined to be 160 kts, and the Track is 355°. What is the wind? Figure 6-4 In-Flight Wind Estimation ESTIMATE! First compare TAS to GS to determine HW/TW component: GS>TAS =TW. Now, compare TH to TK: TH<TK means a Right Drift, which is caused by a Left Crosswind. We know that we are experiencing a Left Tailwind. The 10% Rule states that at a TAS of 150 kts, 15 kts of crosswind will give us about 6° of drift. A drift angle of 5° would only require about 13 knots of crosswind. The inflight wind would be closer to the wing line at about 225°/18 knots (Figure 6-4). 1. Set TAS over TAS arrow (Figure
6-5). Figure 6-5 In-Flight Wind Calculation 1 Information Sheet 6-6-2 Sheet 5 of 10 2. Set Track over TC arrow. Remember that TC <u>or</u> Track can represent the direction of the ground vector (Figure 6-6). Figure 6-6 In-Flight Wind Calculation 2 - 3. Use 10% rule to estimate crosswind and then input DA (5 degrees) on middle wheel (Figure 6-7). - 4. Read crosswind (13 kts) above DA (Figure 6-7). Round to the nearest whole knot. Figure 6-7 In-Flight Wind Calculation 3 & 4 Information Sheet 6-6-2 Sheet 6 of 10 5. Choose a scale and draw a vertical line representing the crosswind component (as per the estimate, to the left, because of the right drift) (Figures 6-8). Figure 6-8 In-Flight Wind Calculation 5 6. Compare TAS to GS to obtain the HW/TW component (160 GS - 150 TAS = 10 kts TW, which also agrees with the estimate). Draw horizontal line along appropriate value (Figure 6-9). Figure 6-9 In-Flight Wind Calculation 6 Information Sheet 6-6-2 Sheet 7 of 10 7. Rotate the compass rose so that the intersection of the two lines is on the vertical scale (Headwind scale). # (Confirm Estimate!) - 8. The direction of the wind is read on top of the TC arrow (228°) (Figure 6-10). - 9. The magnitude is determined by using the same scale from steps 5 & 6, in this case 17 kts (Figure 6-8, 6-9). - 10. Verify the estimate. Figure 6-10 In-Flight Wind Calculation 7 #### SUMMARY OF STEPS NECESSARY TO SOLVE FOR THE WIND ARE: #### (ESTIMATE!) - 1. Set the TAS over the TAS index. - 2. Set the TRACK over the TC index. - 3. Input DA. - 4. Read Crosswind. - 5. Draw Crosswind. - 6. Determine and draw Headwind/Tailwind component. - 7. Rotate Intersection to 12 o'clock. (Confirm Estimate!) - 8. Read Wind Direction. - 9. Read Wind Velocity. - 10. Verify the Estimate. Figure 6-11 BDHI #### **BDHI** Recall in chapter 2 the information provided by the BDHI (Figure 6-11). A majority of an aircrew's navigation information will come from this instrument and will be the only type of electronic navigation available to the student aviator during the majority of training. It is imperative that the aircrew is able to build a picture, or an awareness, of where they are in flight using this instrument. In this course, only information provided by the #2 needle (thicker/double needle) will be covered. This will primarily be TACAN navigation. Information Sheet 6-6-2 # TACAN POINT TO POINT NAVIGATION An advantage to navigating with a TACAN is that an aircrew can navigate themselves directly from one TACAN radial/DME fix to another without first flying to the TACAN station. This is called POINT-TO-POINT NAVIGATION and can be accomplished with the CR-3 computer or with the BDHI. # PACE TOWER PACE TOWER PACE TOWER PACE TOWER PACE TOWER PT. BAKER FIGH PT. FISH PT. FOTEL ARE P # **CR-3 POINT TO POINTS** When using the CR-3 computer to solve point-to-point navigation problems, visualize the wind side of the computer as a map with the center of the circular, green grid representing the TACAN station. The green numbers around the edge of the circular grid represent radials of the TACAN station. Each of the green concentric circles around the station represents range rings. The value assigned to each ring (distance) is printed on the Head/Tail/Crosswind lines. The following steps will utilize a present position of 307°/11 (307° radial at 11 DME) (Figure 6-12) and a destination of 180°/15. **Figure 6-12 TACAN Point to Point 1** Figure 6-13 TACAN Point to Point 2 Once the radial and range have been determined for both the present position and the destination, merely plot each corresponding point on the wheel in a manner similar to plotting the wind in chapter 5 (Figures 6-13 & 6-14). Sheet 8 of 10 Information Sheet 6-6-2 Sheet 9 of 10 Now that the two points are plotted, and the computer is correctly oriented (with the black "TAS" and "TC" circles at the top), the direct course between the two fixes can be computed. To do this, first connect the two dots with a straight line. It's a good idea to mark the destination dot with a circle. This will help to avoid reading reciprocal courses. The next step is to rotate the circular grid until the line connecting the two dots is vertical (parallel to the vertical grid lines). (Figure 6-15). Additionally, the dot representing the destination must be above the dot representing the present position (the arrow points up). To find the direct course (no wind), read the number that is directly above the "TC" symbol at the top of the computer. That number (157) is the MAGNETIC course to the desired destination. In effect, what was drawn is a point on a chart (green, circular grid) showing the present location and another point showing the destination. Then, a line was drawn connecting those two points; and the direction between the two points (the magnetic course) was determined. Figure 6-14 TACAN Point to Point 3 Figure 6-15 TACAN Point to Point 4 Information Sheet 6-6-2 Sheet 10 of 10 To determine the distance between the two points, utilize the Headwind/Tailwind scale as displayed on the CR-3. Read the appropriate displayed range <u>using the same scale</u> numbers used for plotting DME. The distance between the two points can now be found. In this case the distance is 24NM (2.4 squares at 10NM each). Therefore, if the aircrew flies a magnetic COURSE of 157 degrees for 24NM, they should arrive at the desired destination. Sheet 1 of 7 #### **ASSIGNMENT SHEET 6-6-3** #### IN FLIGHT WINDS #### A. INTRODUCTION The purpose of this assignment sheet is to aid the student in determining wind direction and velocity (the wind vector), given the True Heading and True Airspeed (the air vector), Track and Ground Speed (the ground vector). #### **B. ENABLING OBJECTIVES** #### C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 6 - 2. Read Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 7 #### D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. A. Given the following, determine the Drift Angle and In-flight Winds you are encountering: | , | TH | TAS | TRK | GS | DA | X-W | H/T | DIR VEL | |----|-----|-----|-----|-----|----|-----|-----|---------| | 1 | 350 | 150 | 355 | 160 | | | | | | 2 | 091 | 200 | 100 | 180 | | | | | | 3 | 340 | 250 | 335 | 240 | | | | | | 4 | 186 | 130 | 195 | 150 | | | | | | 5 | 065 | 300 | 060 | 290 | | | | | | 6 | 305 | 400 | 314 | 340 | | | | | | 7 | 149 | 265 | 142 | 287 | | | | | | 8 | 275 | 324 | 281 | 284 | | | | | | 9 | 063 | 290 | 060 | 308 | | | | | | 10 | 208 | 445 | 201 | 495 | | | | | | 11 | 170 | 255 | 176 | 235 | | | | | | 12 | 171 | 450 | 168 | 418 | | | | | | 13 | 122 | 420 | 122 | 380 | | | | | | 14 | 160 | 340 | 158 | 342 | | | | | | 15 | 295 | 210 | 299 | 192 | | | | | | 16 | 011 | 300 | 008 | 322 | | | | | | 17 | 213 | 256 | 209 | 242 | | | | | | 18 | 248 | 280 | 240 | 285 | | | | | | 19 | 125 | 112 | 133 | 122 | | | | | | 20 | 225 | 358 | 228 | 365 | | | | | | 21 | 235 | 687 | 240 | 700 | | | | | | 22 | 105 | 250 | 113 | 220 | | | | | | 23 | 110 | 248 | 105 | 210 | | | | | | 24 | 115 | 257 | 106 | 265 | | | | | | 25 | 315 | 954 | 310 | 875 | | | | | | 26 | 225 | 568 | 229 | 550 | | | | | | 27 | 248 | 457 | 240 | 465 | | | | | | 28 | 167 | 851 | 175 | 825 | | | | | | 29 | 159 | 248 | 150 | 265 | | | | | | 30 | 128 | 210 | 135 | 205 | | | | | | 31 | 305 | 541 | 313 | 533 | | | | | | 32 | 248 | 620 | 250 | 600 | | | | | | 33 | 119 | 570 | 122 | 564 | | | | | | 34 | 106 | 541 | 109 | 535 | | | | | | 35 | 111 | 587 | 118 | 601 | | | | | | 36 | 210 | 248 | 215 | 268 | | | | | | 37 | 310 | 158 | 319 | 175 | | | | | Assignment Sheet 6-6-3 Sheet 3 of 7 | | TH | TAS | TRK | GS | DA | X-W | H/T | DIR VEL | |----|-----|-----|-----|-----|----|-----|-----|---------| | 38 | 048 | 168 | 057 | 185 | | | | | | 39 | 150 | 164 | 158 | 175 | | | | | | 40 | 025 | 335 | 032 | 350 | | | | | | 41 | 358 | 125 | 003 | 133 | | | | | | 42 | 089 | 205 | 094 | 218 | | | | | | 43 | 148 | 695 | 140 | 705 | | | | | | 44 | 157 | 850 | 165 | 845 | | | | | | 45 | 248 | 450 | 250 | 435 | | | | | | 46 | 269 | 445 | 273 | 440 | | | | | | 47 | 258 | 205 | 266 | 213 | | | | | - B. Apply the appropriate procedures for determining in-flight winds under the following conditions: - 1. An H-3 is on a true heading of 085° and is experiencing 10° of right drift. The crew has determined the ground speed to be 125 kts. True air speed is determined to be 115 kts. - a. What type of wind is the helicopter experiencing? _____ - b. What is the actual wind being encountered? _____ - 2. A P-3 is on a track of 175° and has traveled 125 nm since taking off 20 minutes ago. It has maintained a true heading of 185° and has flown at a constant TAS of 360 kts. - a. What type of wind has it experienced? _____ - b. What is the speed and direction on the winds encountered? - 3. Refer to the previous cross-country example (Nav-5, # 3): you maintained the desired TAS and altitude, and constant TH of 341°. Having determined your track as 346°, and arriving at point B at 1420 GMT, what were the actual winds encountered in flight? _____ C. Given the following information, determine the *COURSE* and *DISTANCE* to be flown: | 1. You a | are currently on the 210 | ° radial at 30 DM | E. You ar | e instructed | to proceed to | the 045° | radial at | |----------|--------------------------|---------------------|-----------|--------------|---------------|-------------------|-----------| | 44 DME | E. What is the MC and o | listance to be flow | n? | | | | | - 2. You are instructed to proceed to the 332° radial at 84 DME. Currently, you are on the 010° radial at 13 DME. What is the MC and distance to be flown? - 3. You have been cleared to proceed from your present position (refer to the BDHI below) to the 175° Radial at 28 nm. What is the MC and distance to be flown?
4. You have been cleared to proceed from your present position (refer to the BDHI below) to the 215° Radial at 44 nm. What is the MC and distance to be flown? 5. You have been cleared to proceed from your present position (refer to the BDHI below) to the 010° Radial at 55 nm. What is the MC and distance to be flown? - 6. After completing a low-level flight on the VR-1355 on a heading of 256°, the aircrew tunes the TACAN to channel 85. The aircrew reads the head of the #2 BDHI needle indicating a 251° bearing to the station and that the DME is 94 miles. Upon checking in with Approach control, they are informed to proceed to the holding fix (defined as the 020° radial at 15 DME). What is the magnetic course and distance from the current position to the holding fix? - 7. On a heading of 087° southeast of NAS Meridian, an aircrew finds the #2 needle indicates a bearing to the Meridian TACAN of 340° and that the DME is 53 miles. Meridian approach instructs the crew to proceed to the initial approach fix (the Meridian TACAN 170/15). What is the magnetic course and distance? Q-9B-0020L Sheet 6 of 7 TRAINEE GUIDE Assignment Sheet 6-6-3 # **Answers:** A. | | TH | TAS | TRK | GS | DA | X-W | H/T | DIR VEL | |----|-----|-----|-----|-----|-----|-------|------|-----------| | 1 | 350 | 150 | 355 | 160 | 5 R | 13 L | 10 T | 229 \ 17 | | 2 | 091 | 200 | 100 | 180 | 9 R | 31 L | 20 H | 042 \ 37 | | 3 | 340 | 250 | 335 | 240 | 5 L | 22 R | 10 H | 040 \ 24 | | 4 | 186 | 130 | 195 | 150 | 9 R | 20 L | 20 T | 061 \ 28 | | 5 | 065 | 300 | 060 | 290 | 5 L | 26 R | 10 H | 128 \ 27 | | 6 | 305 | 400 | 314 | 340 | 9 R | 65 L | 60 H | 267 \ 88 | | 7 | 149 | 265 | 142 | 287 | 7 L | 32 R | 22 T | 266 \ 38 | | 8 | 275 | 324 | 281 | 284 | 6 R | 34 L | 40 H | 241 \ 52 | | 9 | 063 | 290 | 060 | 308 | 3 L | 15 R | 18 T | 200 \ 23 | | 10 | 208 | 445 | 201 | 495 | 7 L | 54 R | 50 T | 334 \ 74 | | 11 | 170 | 255 | 176 | 235 | 6 R | 27 L | 20 H | 123 \ 33 | | 12 | 171 | 450 | 168 | 418 | 3 L | 24 R | 32 H | 205 \ 39 | | 13 | 122 | 420 | 122 | 380 | 0 R | 0 L | 40 H | 122 \ 40 | | 14 | 160 | 340 | 158 | 342 | 2 L | 12 R | 2 T | 259 \ 12 | | 15 | 295 | 210 | 299 | 192 | 4 R | 15 L | 18 H | 260 \ 24 | | 16 | 011 | 300 | 008 | 322 | 3 L | 16 R | 22 T | 153 \ 27 | | 17 | 213 | 256 | 209 | 242 | 4 L | 18 R | 14 H | 262 \ 23 | | 18 | 248 | 280 | 240 | 285 | 8 L | 39 R | 5 T | 337 \ 39 | | 19 | 125 | 112 | 133 | 122 | 8 R | 16 L | 10 T | 010 \ 17 | | 20 | 225 | 358 | 228 | 365 | 3 R | 19 L | 7 T | 116 \ 20 | | 21 | 235 | 687 | 240 | 700 | 5 R | 60 L | 13 T | 137 \ 61 | | 22 | 105 | 250 | 113 | 220 | 8 R | 35 L | 30 H | 063 \ 46 | | 23 | 110 | 248 | 105 | 210 | 5 L | 22 R | 38 H | 135 \ 43 | | 24 | 115 | 257 | 106 | 265 | 9 L | 40 R | 8 T | 208 \ 41 | | 25 | 315 | 954 | 310 | 875 | 5 L | 83 R | 79 H | 357 \ 117 | | 26 | 225 | 568 | 229 | 550 | 4 R | 40 L | 18 H | 164 \ 44 | | 27 | 248 | 457 | 240 | 465 | 8 L | 64 R | 8 T | 337 \ 65 | | 28 | 167 | 851 | 175 | 825 | 8 R | 119 L | 26 H | 097 \ 121 | | 29 | 159 | 248 | 150 | 265 | 9 L | 39 R | 17 T | 262 \ 42 | | 30 | 128 | 210 | 135 | 205 | 7 R | 26 L | 5 H | 056 \ 26 | | 31 | 305 | 541 | 313 | 533 | 8 R | 75 L | 8 H | 225 \ 75 | | 32 | 248 | 620 | 250 | 600 | 2 R | 22 L | 20 H | 201 \ 30 | | 33 | 119 | 570 | 122 | 564 | 3 R | 30 L | 6 H | 042 \ 30 | | 34 | 106 | 541 | 109 | 535 | 3 R | 28 L | 6 H | 030 \ 29 | | 35 | 111 | 587 | 118 | 601 | 7 R | 71 L | 14 T | 017 \ 73 | | 36 | 210 | 248 | 215 | 268 | 5 R | 22 L | 20 T | 081 \ 30 | | 37 | 310 | 158 | 319 | 175 | 9 R | 25 L | 17 T | 195 \ 30 | # Assignment Sheet 6-6-3 Sheet | | TH | TAS | TRK | GS | DΑ | X-W | H/T | DIR VEL | |----|-----|-----|-----|-----|-----|-------|------|-----------| | 38 | 048 | 168 | 057 | 185 | 9 R | 26 L | 17 T | 294 \ 30 | | 39 | 150 | 164 | 158 | 175 | 8 R | 23 L | 11 T | 042 \ 25 | | 40 | 025 | 335 | 032 | 350 | 7 R | 41 L | 15 T | 282 \ 43 | | 41 | 358 | 125 | 003 | 133 | 5 R | 11 L | 8 T | 235 \ 14 | | 42 | 089 | 205 | 094 | 218 | 5 R | 18 L | 13 T | 326 \ 23 | | 43 | 148 | 695 | 140 | 705 | 8 L | 96 R | 10 T | 235 \ 96 | | 44 | 157 | 850 | 165 | 845 | 8 R | 118 L | 5 H | 077 \ 118 | | 45 | 248 | 450 | 250 | 435 | 2 R | 16 L | 15 H | 203 \ 22 | | 46 | 269 | 445 | 273 | 440 | 4 R | 31 L | 5 H | 191 \ 31 | | 47 | 258 | 205 | 266 | 213 | 8 R | 29 L | 8 T | 160 \ 30 | B. - 1. a. Left tail - b. 338°/22kts - 2. a. Right tail - b. 278°/65kts - 3. 214°/33kts C. - 1. 039°M / 74nm - $2.326^{\circ}M$ / 75nm - 3. 147°M / 60nm - 4. 239°M / 60nm - 5. 349°M / 60nm - 6. 259°M / 87nm - 7. 335°M / 38nm Sheet 1 of 2 #### **OUTLINE SHEET 6-7-1** #### FLIGHT PLANNING AND CONDUCT #### A. INTRODUCTION Any successful military operation is a result of careful planning and coordination. This requires all participants in the operation to carefully plan each of their missions in order to execute the plan flawlessly and strive to be <u>on target</u>, <u>on time</u>. This chapter introduces methods that enable the aircrew to develop a basic flight plan incorporating elements from each preceding chapter. #### B. ENABLING OBJECTIVES - 4.11 DESCRIBE the flight planning process as it pertains to air navigation, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.12 DESCRIBE the jet log, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.13 PERFORM time and fuel planning using the en-route portion of the jet log, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.15 CALCULATE true heading, crab angle, and groundspeed using the CR-3 air navigation computer given true airspeed, true course, and preflight wind direction and velocity to within +/- 3 degrees and +/-3 KTS (wind velocity less than 70 KTS), or +/-5 degrees and +/- 5 KTS (wind velocity greater than 70 KTS), in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 2.343 CALCULATE wind direction and velocity using the CR-3 air navigation computer given true heading, true airspeed, track, and groundspeed to within +/- 3 degrees and +/-3 KTS (wind velocity less than 70 KTS), or +/-5 degrees and +/- 5 KTS (wind velocity greater than 70 KTS), in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.16 CALCULATE the estimated time of arrival (ETA) at a destination when given an updated ground speed, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 - 4.17 CALCULATE the estimated fuel remaining (EFR) at a destination when given the current fuel onboard and a predicted fuel flow, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Outline Sheet 6-7-1 Sheet 2 of 2 # C. TOPIC OUTLINE - 1. Introduction - 2. This Lesson Topic - 3. Flight Planning Process - 4. The Jet Log - 5. Flight Planning Example - 6. In Flight Navigation - 7. In Flight Navigation: Computing Actual Winds - 8. In Flight Navigation: Use of the Jet Log Sheet 1 of 13 #### **INFORMATION SHEET 6-7-2** #### FLIGHT PLANNING AND CONDUCT #### A. INTRODUCTION Any successful military operation is a result of careful planning and coordination. This requires all participants in the operation to carefully plan each of their missions in order to execute the plan flawlessly and strive to be <u>on target</u>, <u>on time</u>. This chapter introduces methods that enable the aircrew to develop a basic flight plan incorporating elements from each preceding chapter. #### **B. REFERENCES** - 1. Manual, NATOPS General Flight and Operating Instructions, OPNAVINST 3710.7 (series) - 2. DoD Flight Information Publication (FLIP) General Planning, GP-1 - 3. Manual, CR Computer, Jeppesen JS314294E #### C. INFORMATION #### **FLIGHT PLANNING** #### FLIGHT PLANNING STEPS Basic air navigation and flight planning, in general, follows four steps: - 1. Measure True Courses and distances. - 2. Use preflight winds to determine appropriate headings and Ground Speeds. - 3. Using Ground Speed, compute an enroute time for each leg (ETE). - 4. Using ETE and a given fuel flow, compute fuel consumption for each leg (Leg Fuel). These steps incorporate everything that has been presented in this course so far and will enable the aircrew to arrive at their appointed place on time and with enough fuel. The result of these steps will be recorded on a card (called a Jet Log) to be referenced in flight. #### **JET LOGS** The primary purpose of the jet log is fuel management. The jet log also assists with enroute voice communications, navigation, and nav-aid identification. Other sections of the jet log. Information Sheet 6-7-2 Sheet 2 of 13 provide the Warrior-Navigator with departure and destination airfield information. The jet log is about 5 X 7 inches in size, is designed to fit on a knee board, and gives the aviator instant access to important information. This is a single-source document, eliminating the need to reference other publications during critical phases of flight such as takeoffs and landings. The jet log will be used by the student aviator to plan all T-6 instrument flights utilizing the enroute airways structure. The front and backsides of the jet log are shown in Figure 7-1. The various sections of the log will be introduced briefly in the following paragraphs. | CNATRA-GE | | | FLIGH
S/N01971 | | | | | | | | EII | EL PLAN | | |--------------|-------|-----------|-------------------|----------|---------------------|-------------------|-----------|--------------|-------|----------------------------|-------------|---------------------------|-------------| | DEP | | CLNC | ; | | GND | | TC | WER | | | FU | EL PLAN | | | ATIS ATIS | | TIME | | 1 | CONT
TAS
MACH | | | S PH
S PM | | 1. DEST IAF | | 6. START / TAXI | | | CLEARANCE | E | | | | | | | | | 2. (If required) — | | 7. TOTAL REQ
(4,5 & 6) | | | | | | | | | | | | | 3. APPROACHES - | | 8. TOTAL ABOARD | | | | | | | | | | | | | 4. TOTALS (1,2, & 3) _ | | 9. SPARE FUEL (8-7)
|) | | DEPARTUR | E | | | | | | | | | 5. RES 10% of 4 | | | | | DEST
ELEV | | AP
COI | | | TOWER | | | ONT | | (Min 20 mins) | | | | | ROUTE
TO | IDENT | cus | DIST | ETE | ETA
ATA | LEG
FUEL | | | NOTES | | EMERGENCY " | BINGO" TO ALTERNA | ATE | | 10 | | | | | A.III | 1 522 | 74.1 | | | | REQUIRED A | PPROACH RES | TOTAL | | | | | | | | | | | | LAST CRUISING ALT | r+_ | +_ | | | | | | | | | | | | | INITIAL APP ALT | +_ | + | | | | | | | | | | | | | EMER SAFE ALT | + | + | | | | _ | | | | \vdash | $\mid \cdot \mid$ | | | | | | | | | | | | | | \vdash | | | | | CHECK LIST | DESTINATION | ALTERNATE | EMER FIELDS | | | | | | | | | | | | RWY LENGTH | | | | | | | | | | | - | | | | LIGHTING | | | ID | | | + | | | \vdash | + | \vdash | | | | FUEL/JASU/LOX | | | СН | | | | | | | | 1 | | | | ATIS | | | PAGE NO. | | | - | | | | \vdash | - | | | | METRO | | | | | | | | | | 1 | | | | | RAPCON | | | | | | | | | | | 1 | | | | PAR MINS | | | | | | | | | | \vdash | 1 | | FRCST AL | Т | TAC MINS | | | | | ALTERNATE | | | ROUT | Έ | | ALTITU | DE | TIME | FUEL | ARR GEAR | | | | | ALT ELEV | | | | | | | | | | PUBS | | | | | ALI ELEV | | | APC (| CONT | | TOWER | | GND | CONT | NOTAMS | | | | | | | \dashv | | | | | $-\Gamma$ | | - | FUEL PACKET | | | | | | | \pm | \top | | | | \pm | | | FLASHLIGHT
WALLET, ETC. | | | | Figure 7-1 Jet Log Information Sheet 6-7-2 Sheet 3 of 13 #### JET LOG FRONT The departure section (Figure 7-2) contains blanks for information pertaining to the departure such as field elevation, communication frequencies, planned true airspeed, and planned fuel flow. | SINGLE ENGINE JET FLIGHT LOG
CNATRA-GEN 3760.7 (REV. 7-1815/NOTPTLCF19492) | | | | | | | | | |---|------------|----------|-------------|--|--|--|--|--| | DEP ELEV | CLNC DELAY | GND CONT | TOWER | | | | | | | ALT CORR | TIME OFF | TAS | LBS PH/PMIN | | | | | | Figure 7-2 Departure Section The clearance section (Figure 7-3) consists of space to copy the air traffic control (ATC) clearance which includes departure procedures, approved route of flight, altitude, and departure frequencies. This section is left blank during preflight planning and is filled in just prior to taxiing as the clearance is received over the radio. **Figure 7-3 Clearance Section** The destination section (Figure 7-4) contains blanks for information pertaining to the destination airfield such as airfield elevation and communication frequencies. | DEST | APC | TOWER | GND | |------|------|-------|------| | ELEV | CONT | | CONT | **Figure 7-4 Destination Section** Information Sheet 6-7-2 Sheet 4 of 13 **Figure 7-5 Enroute Section** The enroute section will be the only part of the jet log utilized in this course (Figure 7-5). It contains information about each leg along a route of flight. Starting from the left, there is space for information about the electronic nav-aids that will be used to define points along the route of flight. There are boxes for the magnetic course (CUS) and distance (DIST) for each leg of the flight. There are also columns for estimated time enroute (ETE), estimated time of arrival (ETA)/ actual time of arrival (ATA), leg fuel, and estimated fuel remaining (EFR)/ actual fuel remaining (AFR). The actual time of arrival and actual fuel remaining blocks are filled in during flight. The alternate section (Figure 7-6) provides room for data necessary to safely divert to another field due to bad weather at the destination, fouled deck, etc. | FRCST ALT | ROUTE | ALT | TIME | FUEL | |-----------|----------|-------|----------|------| | ALT ELEV | APC CONT | TOWER | GND CONT | | **Figure 7-6 Alternate Section** Information Sheet 6-7-2 Sheet 5 of 13 #### **JET LOG BACK** The fuel plan section (Figure 7-7) contains both a summary of the fuel required to complete the flight, including a reserve, and an emergency (Bingo) fuel to the alternate field at various flight profiles. Fuel consumption is unique to each individual aircraft and flight profile. Figure 7-7 Fuel Section Information Sheet 6-7-2 Sheet 6 of 13 The checklist section (Figure 7-8) at the bottom of the card contains blanks for details about both the destination and alternate airfields. There are also a few blocks reminding the aircrew of items to check or bring along on the flight. | CHECK LIST | DESTINATION | ALTERNATE | EMERG FIELDS | |----------------------------|-------------|-----------|--------------| | RWY LENGTH | | | | | LIGHTING | | | | | FUEL/JASU/LOX | | | | | UHF/ADF | | | | | UHF/DF | | | | | RAPCON | | | | | PAR MINS | | | | | TAC MINS | | | | | APR ŒAR | | | | | PUBS | | | | | NOTAMS | | | | | FUEL PACKET | | | | | FLASHLIGHT
WALLET, ETC. | | | | **Figure 7-8 Checklist Section** A sample completed jet flight log for a flight from NAS Jacksonville to NAS Whiting North is shown in Figure 7-9. | CNATRA-GEN | 5, 50.7 | CLNC | | | GND (| TIAOS | | 1 ** | WER | | | |---------------------|------------|-------------|--------|---------|------------|-------------|------------|--|--------|--|--| | ALT CORR TIME | | | 20 | 68.7 | | JONI | 33 | 5.4 | 5.4 34 | | | | | | |)FF | | TAS | 18 | 80 KI | LBS PHIPMIN 250/4. | | | | | CLEARANCE | DEPARTURE | 37 | 2.0 | | | | | | | | | | | DEST 22 | 2' | APC
CONT | 28 | 4.6 | TOWE | R 35 | 5.8 | CONT | - | 336.4 | | | ROUTE
TO | CHAN | cus | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | | NO | TES | | | CRESTVIEW | 719 | 8/0 | 69 | 0.30 | | 79 | 706 | _ | -5£ | CENTER | | | VZ47
NIREGRASS | RR8
53 | 973 | 71 | 0.24 | | 100 | 606 | | | | | | V7
TALLAHASSEL | TLH
122 | 20 | 69 | 0.23 | | 96 | 510 | | | | | | V198
CREENVILLE | ÇEF
27 | 088 | 37 | 0.10 | | 24 | 486 | | | | | | V198
TAYLOR | TA4
76 | 00, | 64 | 0.21 | | 51 | 435 | | | | | | V198
MONIA INTXN | TAU | 096 | 26 | 0.09 | | 22 | 413 | JAX 7 | 14.5 | | | | NIP | NIP
49 | 130 | 25 | 0.08 | | 19 | 394 | NAS JA | CES! | ONVILLE | | | | | | | | | - | | <i>*************************************</i> | 0200 | <i>M</i> * * * * * * * * * * * * * * * * * * * | | | | | | 355 | 2.05 | | 397 | | | | | | | | | | | | | | | FRCST AL | т. | | | | FRCST ALT | L FIEL | D NZC | ROUTE | -D- NZ | , | ALT 4 | 000 | TIME 0.0 | 4 | FUEL 20 | | | ALT ELEV | 81 | | APC CO | NTJAX 2 | 284.6 | TOWER | 360.2 | GND CON | 381 | 7.4 | Figure 7-9 Completed Sample Log Information Sheet 6-7-2 Sheet 7 of 13 ### FLIGHT PLANNING EXAMPLE As stated earlier, only the enroute section will be emphasized in this course. In the following example, a flight will be planned from Tyndall AFB (30° 04.2' N 085° 34.6' W) to Marianna Municipal (30° 50.1' N 085° 11.0' W) with an intermediate turn point over Blountstown Airfield (30° 27.0'N 085° 02.0' W). The preflight winds are 300/20, TAS=120kts, fuel flow=240pph and total starting fuel is 815 pounds. Takeoff time is 1400 Zulu. #### STEP 1: MEASURE TRUE COURSES AND DISTANCES. The first step in preflight planning is to measure the courses and the distances utilizing the procedures in chapter two. The True Course to Blountstown from Tyndall is 051°T and from Blountstown to Marianna is 342°T. Figure 7-10 depicts a generalization of this route. Figure 7-10 Course & Distance Information Sheet 6-7-2 Sheet 8 of 13 Determine the distances and fill in the applicable blocks on the jet log as in Figure 7-11. Notice that any "given" information can be entered in the "notes" block for the starting point. | DEST
ELEV | | APC
CONT | • | | TOW | ER | | GND
COND | |--------------|-------|-------------|------|-----|-----|------|------|-----------------------------------| | ROUTE | IDENT | | DICT | | ETA | Leg | EFR | NOTES | | TO | CHAN | cus | DIST | ETE | ATA | Fuel | AFR | NOIES | | TYNDALL | | | | | | | 815# | TAS=120 FF=240PPH
WINDS=300/20 | | BLOUNTSTOWN | | 051 | 36 | | | | | | | MARIANNA | | 342 | 25 | | | | | | Figure 7-11 Step 1 Flight Planning #### STEP 2: COMPUTING HEADING AND GROUNDSPEED The next step is to use preflight winds to compute a True Heading from the True Course and the predicted ground speed for each leg. Using the procedures from chapter five, predicted heading and ground speed for the first leg are 042°T/127kts and for the second leg are 334°T/105kts. The resulting heading and Ground Speed values can then be entered in the "notes" block to the far right of the jet log for reference during the flight (Figure 7-12). | | | APC
CONT | | | | | | GND
COND | |-------------|-------|-------------|------|-----|-----|------|------|-----------------------------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | Leg | EFR | NOTES | | то | CHAN | CUS | ופוט | EIE | ATA | Fuel | AFR | NOIES | | TYNDALL | | ٨ | | | | | 815# | TAS=120 FF=240PPH
WINDS=300/20 | | BLOUNTSTOWN | | 051 | 36 | | | | | TH-042 GS=127 | | MARIANNA | | 342 | 25 | | | | | TH=334 GS=105 | Figure 7-12 Step 2 Flight Planning Information Sheet 6-7-2 Sheet 9 of 13 #### STEP 3: COMPUTING ESTIMATED TIME ENROUTE (ETE) Once a Ground Speed is determined, an estimated time enroute (ETE) can be calculated for each leg. This is the third step in preflight planning. The distance from Tyndall to Blountstown is 36NM and will be flown at a predicted Ground Speed of 127kts. Using the procedures from chapter three, an ETE of 17 minutes is calculated which can then be entered in the ETE block shown in Figure 7-13. | DEST
ELEV | | APC
CONT | | | TOWER | | | GND
COND | |--------------|---------------|-------------|------|-------|-----------------|-------------|------------|-----------------------------------| | ROUTE
TO | IDENT
CHAN | cus | DIST | EΤΕ | ETA
ATA | Leg
Fuel | EFR
AFR | NOTES | | TYNDALL | \vdash | | | | | | 815# | TAS=120
FF=240PPH
WINDS=300/20 | | BLOUNTSTOWN | \vdash | 051 | 36 | 17+00 | 1417+00 | | | TH-042 GS=127 | | MARIANNA | | 342 | 25 | 14+18 | <u>14</u> 31+18 | | | TH=334 GS=105 | Figure 7-13 Step 3 Flight Planning STEP 4: COMPUTING LEG FUEL AND ESTIMATED FUEL REMAINING (EFR) The next step is to use the ETE just computed to find how much fuel will be used for each leg and the estimated fuel remaining (EFR) at the next point. The fuel flow for this problem is 240pph. Utilizing fuel computation procedures from chapter three, there will be 68# of fuel burned on the first leg. Subtract this leg fuel from the starting fuel (815#) to arrive at the estimated fuel remaining (EFR) over the next turn point, Blountstown. The results of these computations are entered in the appropriate jet log blocks as shown in Figure 7-14. | DEST
ELEV | | APC
CONT | • | | TOW | ER | | GND
COND | |--------------|-------|-------------|------|-------|---------|------|------|-----------------------------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | Leg | EFR | NOTES | | то | CHAN | CUS | ופוט | = | ATA | Fuel | AFR | 110120 | | TYNDALL | | | | | | | 815# | TAS=120 FF=240PPH
WINDS=300/20 | | BLOUNTSTOWN | | 051 | 36 | 17+00 | 1417+00 | 68# | 747# | TH-042 GS=127 | | MARIANNA | | 342 | 25 | 14+18 | 1431+18 | 57# | 690# | TH=334 GS=105 | Figure 7-14 Step 4 Flight Planning Each of the flight planning steps is repeated for the remaining legs and logged. Information Sheet 6-7-2 Sheet 10 of 13 #### **FLIGHT CONDUCT** #### IN-FLIGHT NAVIGATION When the aircrew straps into the aircraft to execute their plan, the information on the jet log is nothing more than their best estimate as to what will happen. Aviation is a dynamic environment. Conditions or situations change rapidly and unexpectedly requiring the aircrew to adapt and rethink/recompute their plan continuously. To the greatest extent possible, aircrew should strive to maintain their course as published or planned in order to maintain a safe and orderly flying environment. However, in this course, if the aircrew find themselves off course, merely compute a NEW course and heading to the turn point/destination using updated winds, and update the ETA and EFR. ### FLIGHT CONDUCT (UPDATING) STEPS Basic in-flight navigation follows four basic updating steps: - 1. Plot fix and measure track/distance. - 2. Measure updated true course/distance to next turn point. - 3. Determine actual in-flight winds. - 4. Apply new winds to remaining legs and update ETA and EFR. #### FLIGHT CONDUCT EXAMPLE Continuing with the flight planning example from Tyndall AFB to Marianna Municipal, enroute to Blountstown at an elapsed time of 5+05, the aircrew find themselves on the 205° radial from Marianna VORTAC (30° 47.2'N 085° 07.5'W) at a distance of 39NM. Fuel flow remains 240pph. Compute a new ETA and EFR at Blountstown. Figure 7-15 Track & Distance STEP 1: PLOT FIX AND MEASURE TRACK/DISTANCE Information Sheet 6-7-2 Sheet 11 of 13 The first step in this problem is to plot the given fix and measure the resulting track and distance flown. Plotting 205°/39 on the chart (don't forget to convert mag to true) and then measuring the line from Tyndall to this point yields a track of 045° TRUE and a distance of 11NM (Figure 7-15). | | | APC
CONT | | | | | | GND
COND | |-------------|-------|-------------|------|------|-----|------|-----|-------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | Leg | EFR | NOTES | | то | CHAN | 005 | ופום | ш | ATA | Fuel | AFR | HOIES | | MARIANNA | | (TK) | 11 | 5+05 | | | | | | 205/39 | | 045 | | 3103 | | | | | | BLOUNTSTOWN | | | | | | | | | | MARIANNA | | | | | | | | | Figure 7-16 Step 1 Flight Conduct #### STEP 2: MEASURE UPDATED COURSE/ DISTANCE TO NEXT TURNPOINT From the fix plotted in the first step, a new course line is drawn directly to the next turn point. Measuring this line yields a new True Course of 057° and a distance of 26 nm (Figure 7-17). Figure 7-17 Track & New Course Information Sheet 6-7-2 Sheet 12 of 13 Fill in information as shown in Figure 7-18. | DEST
ELEV | | APC
CONT | | | | | | GND
COND | |--------------------|-------|-------------|------|------|-----|------|-----|-------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | Leg | EFR | NOTES | | то | CHAN | 000 | 5.01 | -:- | ATA | Fuel | AFR | | | MARIANNA
205/39 | | (TK)
045 | 11 | 5+05 | | | | | | BLOUNTSTOWN | | 057 | 26 | | | | | | | MARIANNA | | 342 | 25 | | | | | | Figure 7-18 Step 2 Flight Conduct #### STEP 3: DETERMINE ACTUAL WINDS The <u>True Heading</u> for this leg was 042°T. Using this value, the <u>Track</u> of 045°T, the <u>TAS</u> of 120, and the actual <u>Ground Speed</u> of 130 kts (using time and distance covered), actual winds of 254°/11 are computed. Fill in information as shown in Figure 7-19. | DEST
ELEV | | APC
CONT | | | TOW | ER | | GND
COND | |--------------------|-------|-------------|------|------|-----|------|-----|--| | ROUTE | IDENT | cus | DIST | ETE | ETA | Leg | EFR | NOTES | | то | CHAN | CO | ופוע | =1= | ATA | Fuel | AFR | NOILO | | MARIANNA
205/39 | | (TK)
045 | 11 | 5+05 | | | | GS=130, TW=10, DA=3R
LX-W=6,WNDS=254/11 | | BLOUNTSTOWN | | 057 | 26 | | | | | | | MARIANNA | | 342 | 25 | | | | | | Figure 7-19 Step 3 Flight Conduct #### STEP 4: APPLY NEW WINDS TO REMAINING LEGS AND UPDATE ETA AND EFR The next step is to take these "new" winds and apply them to the new course to Blountstown (057°T) in order to determine a new True Heading and predicted Ground Speed. The True Heading is calculated to be 055°T, and the Ground Speed is calculated to be 131kts. With the new Ground Speed and remaining distance to Blountstown a new ETE can be calculated. Given this new ETE and the fuel flow, a new leg fuel is calculated. With the given Information Sheet 6-7-2 Sheet 13 of 13 fuel on board minus the calculated amount of fuel used up to this point (20.5#), a new EFR can be computed at Blountstown, just as in the preflight steps. In this case, the ETA will be 16+59 (11+54 ETE added to 5+05 elapsed time) with an EFR of 747# (815# at the start, minus 20.5# getting off course, minus 47.5# leg fuel). Repeat these steps for the remaining legs to derive an ETA and EFR at the destination. The results are logged in the jet log as in Figure 7-20. | DEST
ELEV | | | TOWER | | | GND
COND | | | |--------------|-------|------|-------|-------|-------|-------------|-------|---------------------------------------| | ROUTE | IDENT | cus | DIST | ЕТЕ | ETA | Leg | EFR | NOTES | | TO | CHAN | COS | ופוט | == | ATA | Fuel | AFR | NOIEG | | MARIANNA | | (TK) | 11 | 5+05 | 5+05 | 20.5 | 794.5 | GS=130, TW=10, DA=3R | | 205/39 | | 045 | | 0.00 | | 20.0 | | LX-W=6,WNDS=254/11 | | BLOUNTSTOWN | | 057 | 26 | 11+54 | 16+59 | 47.5 | 747# | GS=131, TW=11
LXW=4, CA=2L, TH=055 | | MARIANNA | | 342 | 25 | 12+36 | 29+35 | 50.5 | 696.5 | GS=119, HW=1
LX-W=11, CA=5L,TH=337 | Figure 7-20 Step 4 Flight Conduct Sheet 1 of 44 #### **ASSIGNMENT SHEET 6-7-3** #### FLIGHT PLANNING AND CONDUCT #### A. INTRODUCTION Any successful military operation is a result of careful planning and coordination. This requires all participants in the operation to carefully plan each of their missions in order to execute the plan flawlessly and strive to be <u>on target</u>, <u>on time</u>. This chapter introduces methods that enable the aircrew to develop a basic flight plan incorporating elements from each preceding chapter. - B. ENABLING OBJECTIVES - C. STUDY ASSIGNMENT - 1. Review Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 Unit 6, Chap 7 - D. STUDY QUESTIONS NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances per page 842. - 1. All of the following are basic air navigation flight planning steps, except - a. determine headings & ground speeds using preflight winds - b. compute an ETE for each leg using ground speed - c. use track to determine updated winds - d. plot courses and measure distances - 2. The primary purpose of a jet log is to provide the aviator with instant access to navigational information during critical phases of flight. - a. TRUE - b. FALSE ## Assignment Sheet 6-7-3 Sheet 2 of 44 - 3. To plot a position on a Lambert Conformal chart when using TACAN radial/DME fix, _____ must be applied. - a. magnetic variation - b. instrument error - c. deviation - d. instrument variation - 4. Using the practice chart, the jet log below, and the following preflight information, determine the EFR at Evadale. GIVEN: Route of Flight: Lake Charles, $(30^{\circ}~08.8^{\circ}N,~093^{\circ}~13.5^{\circ}W)$ direct Jefferson, $(29^{\circ}~57.0^{\circ}N,~094^{\circ}~01.5^{\circ}W)$ direct Evadale $(30^{\circ}~19.0^{\circ}N,~094^{\circ}~05.0^{\circ}W)$. TAS is 190kts, fuel flow will be 120pph and Fuel on Board is 150lbs. Preflight winds are $080^{\circ}/35$. | DEST
ELEV | | APC
CONT | | | TOWER | | | GND
CONT | |--------------|-------|-------------|------|-----|-------|------|-----|-------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | LEG | EFR | NOTES | | то | CHAN | | 0001 | | ATA | FUEL | AFR | 140123 | Assignment Sheet 6-7-3 Sheet 3 of 44 5. Eight minutes into the flight the aircrew fixes their position as the 080 Radial at 20 miles from the Beaumont VORTAC (Ch 92). What is the updated EFR over Evadale? | DEST
ELEV | | APC
CONT | | | TOWE | ₹ | | GND
CONT | |--------------|-------|-------------|------|-----|------|------|-----|-------------| | ROUTE | IDENT | cus | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | - 000 | 5 | | ATA | FUEL | AFR | NOTES | 6. Using the practice chart, the jet log below, and
the following preflight information, determine the EFR at Beauregard. GIVEN: Route of flight: Alexandria (31° 19.5'N, 092° 33.0'W) direct Natchitoches (31° 44.2'N, 093° 05.5'W) direct Beauregard (30° 50.0'N, 093° 20.0'W). TAS is 135, Fuel on Board is 200lbs with a fuel flow of 100pph. Preflight winds are 190°/45. | DEST
ELEV | | | APC
CONT | | | 7 | | GND
CONT | |--------------|-------|-----|-------------|-----|-----|------|-----|-------------| | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | 005 | DIST | | ATA | FUEL | AFR | NOTES | · | · | | | | | | | | | | | | 7. Using the information given in question 6, the aircrew find themselves over Natchitoches at 0944Z. If they need to be overhead Beauregard at 1000Z, what GROUNDSPEED must they maintain enroute to Beauregard? Assignment Sheet 6-7-3 Sheet 4 of 44 # USE THE JETLOGS AT THE END OF THE CHAPTER AND THE CHART TO COMPLETE PROBLEMS 8 - 13. 8. Situation for Problem 8: Plan to depart from the carrier at 0200Z. Route of flight: Carrier (28° 05'N, 096° 25'W) direct MATAGORDA (28° 33'N, 096° 07W') direct PORT LAVACA (28° 39'N, 096° 41'W). CA is 2,000 ft, TAS is 160 kts. Fuel on board is 862 lbs, fuel flow will be 123 pph. The local altimeter is 30.42", temperature is +25°C, and preflight winds are 130°/20 kts. a. Compute ETA and EFR at Port Lavaca. At 0204Z, you are on the 173° radial, 31 DME of the Palacios VORTAC (28° 46'N, 096° 18'W). - b. Plot your position, compute in-flight winds and update ETA and EFR at Port Lavaca. - 9. Situation for Problem 9: You plan to depart from Huntsville at 1830Z. Route of flight is Huntsville (30° 45'N, 095° 35'W) direct Hearne (30° 53'N, 096° 37'W) direct Giddings Lee (30° 10'N, 096° 58'W). Planned flight altitude is 14,000 ft and the TAS is 260 kts. Forecast winds are 020°/30 kts with a temperature of -25°C. The local altimeter is 29.42". Fuel at takeoff is 3,500 lbs with a fuel flow of 475pph. - a. Compute ETA and EFR at Giddings Lee. At 1836Z, your BDHI shows a bearing to the College Station VORTAC (30° 35'N, 096° 25'W) of 247° at 21DME. b. Plot your position, compute in-flight winds and update your ETA and EFR at Giddings Lee. Assignment Sheet 6-7-3 Sheet 5 of 44 10. Situation for Problem 10: Plan a flight to depart from Lockridge at 0200Z. Route of flight: Lockridge (31° 59'N, 095° 58'W) direct Cherokee Co. (31° 53N, 095° 13'W) direct Center (31° 50'N, 094° 09'W). CA is 10,000 ft. TAS 185 KTS. Forecast winds are 330°/ 25 kts and the temperature is -6°C. The local altimeter is 30.92". Fuel on board is 1,200 lbs and fuel flow will be 245 pph. a. Compute ETA and EFR at Center. At 0204Z, your BDHI indicates a bearing to the Frankston VORTAC (32° 04'N, 095° 32'W) of 037° at 13 DME. - b. Plot your position, compute in-flight winds and update ETA and EFR at Center. - 11. Situation for Problem 11: Plan a flight to depart from Liberty at 0430Z. Route of flight: Liberty Airfield (30° 05.1'N. 094° 41.8'W) direct Livingston Airfield (30° 41.4'N, 095° 01.1'W) direct Navasota Airfield (30° 22.5'N, 096° 06.6'W). CA is 10,500 ft. TAS 175 KTS. Forecast winds are 130°/ 40 kts and the temperature is 16°C. The local altimeter is 30.42". Fuel on board is 1,552 lbs and average fuel flow will be 131 pph. - a. Compute ETA and EFR at Navasota. At 0438Z, your BDHI indicates a bearing to the Daisetta VORTAC (CH 116) of 145° at 16 DME. - b. Plot your position, compute in-flight winds and update ETA and EFR at Navasota. - 12. Situation for Problem 12: Plan a flight to depart from Angelina at 1430L. Route of flight: Angelina Airfield (31° 14.1'N. 094° 45.0'W) direct Cherokee Co. Airfield (31° 52.5'N, 095° 13.1'W) direct Carter Airfield (31° 34.0'N, 095° 46.0'W). TAS 148 KTS. Forecast winds are 358°/ 36 kts and the temperature is -26°C. The local altimeter is 28.42". Fuel on board is 827 lbs and average fuel flow will be 110 pph. - a. Compute ETA and EFR at Carter. At 1438L, your BDHI indicates you are on the Lufkin VORTAC (31°10'N/ 094°45'W) (CH 58) 319 radial at 26.5 DME. b. Plot your position, compute in-flight winds and update ETA and EFR at Carter. Assignment Sheet 6-7-3 Sheet 6 of 44 13. Situation for Problem 19: Plan a flight to depart from USS Lincoln at 1240L. Route of flight: Lincoln (29° 01.0'N. 092° 01.0'W) direct Williams Airfield (29° 42.8'N, 091° 20.6'W) direct Houma Terrebonne Airfield (29° 34.0'N, 090° 39.5'W). CAS 200 KTS, pressure altitude is 17,000'. Forecast winds are 158°/ 13 kts and the temperature is -75°C. The local altimeter is 26.12". Fuel on board is 1100 lbs and average fuel flow will be 122 pph. a. Compute ETA and EFR at Houma Terrebonne. At 1249L, your BDHI indicates you are on the Tibby VORTAC (29° 40'N, 090° 50'W, CH 57) 254 radial at 45 DME. b. Plot your position, compute in-flight winds and update ETA and EFR at Houma Terrebonne. | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES | |-------------|---------------|-----|------|-----|------------|-------------|------------|-----------| | 10 | | | | | | | - " ' ' | FRCST ALT | | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES | |-------|---------------|-----|------|-----|------------|-------------|------------|-----------| | ТО | CIAN | | | | AIA | TOLL | AIIN | FRCST ALT | | | | | | | | | | | | ROUTE
TO | IDENT
CHAN | -CH5 | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES | |-------------|---------------|------|------|-----|------------|-------------|------------|-----------| FRCST ALT | | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | NOTES | |-------------|---------------|-----|------|-----|------------|-------------|-----------| FRCST ALT | | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | NOTES | |-------------|---------------|-----|------|-----|------------|-------------|-----------| FRCST ALT | | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES | |-------------|---------------|-----|------|-----|------------|-------------|------------|-----------| | 10 | 0,000 | | | | , () , (| | 7 4 1 (| FRCST ALT | Assignment Sheet 6-7-3 Sheet 13 of 44 ## **Answers:** 1. c. 2. b. 3. a. 4. 113# | DEST | | APC | | | TOWER | | | GND | |-----------|-------|------|------|-------|-------|------|------|-----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | Lake | | | | | | | | FF=120 TAS=190 | | Charles | | | | | 0+00 | | 150# | WINDS=080/35 | | Jefferson | | 256 | 43 | 11.45 | 11+27 | 23# | 127# | LX-W=3 CA=1L TH=255 | | | | | | 11+27 | | | | TW=34 GS=224 | | Evadale | | 353 | 22.5 | 7.2 | 18+39 | 14# | 113# | RX-W=34 CA=10R TH=003 | | | | | | 7+12 | | 1 | | HW=3 GS=188 | 5. Tracked 248°T for 23.5 nm in 8 minutes yields in-flight winds of 305° / 27 kts. New EFR = 104# | DEST | | APC | | | TOWER | | | GND | |------------|-------|------|------|------|-------|------|------|----------------------| | ELEV | CONT | | | | | | CNTL | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | Fix | | 248 | 23.5 | 8.0 | 8.0 | 16# | | DA=7L GS=176 HW=14 | | BPT 080/20 | | (TK) | | 8+00 | 8+00 | | 134# | RX-W=23 WINDS=305/27 | | Jefferson | | 265 | 20 | 7.1 | 15+06 | 14# | 120# | RX-W=18 CA=6R TH=271 | | | | | | 7+06 | | | | HW=21 GS=169 | | Evadale | | 353 | 22.5 | 7.85 | 22+57 | 16# | 104# | LX-W=20 CA=6L TH=347 | | | | | | 7+51 | | | | HW=18 GS=172 | Sheet 14 of 44 ## 6. 115# | DEST | | APC | | | TOWER | | | GND | |--------------|-------|------|------|-------|-------|------|------|-----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | ТО | CHAN | | | | ATA | FUEL | AFR | | | Alexandria | | | | | | | | FF=100 TAS=135 | | | | | | | 0+00 | | 200# | WINDS=190/45 | | Natchitoches | | 312 | 38 | 14.5 | 14+30 | 24# | 176# | LX-W=38 CA=16L TH=296 | | | | | | 14+30 | | | | TW=23 GS=158 | | Beauregard | | 194 | 56 | 37.4 | 51+54 | 62# | 114# | LX-W=4 CA=2L TH=192 | | | | | | 37+24 | | | | HW=45 GS=90 | ## 7. 210 kts ## 8a. | DEST | | APC | | | TOWER | | | GND | |-----------|-------|------|------|-------|---------|------|------|----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | ТО | CHAN | | | | ATA | FUEL | AFR | | | USS Boat | | | | | | | | FF=123pph TAS=160 | | | | | | | 0200Z | | 862# | WINDS=130/20 | | Matagorda | | 029T | | 11.55 | 0211+33 | | 839# | RX-W=20 CA=7R TH=036 | | | | | 31.5 | 11+33 | | 23# | |
TW=4 GS=164 | | Port | | 283T | | 10.1 | 0221+39 | | 818# | LX-W=9 CA=3L TH=280 | | Lavaca | | | 30 | 10+06 | | 21# | | TW=18 GS=178 | ## 8b. | DEST | | APC | | | TOWER | | | GND | | |-------------|-------|------|------|-------|---------|-------|--------|----------------------|--| | ELEV | CONT | | | | | | CNTL | | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | | то | CHAN | | | | ATA | FUEL | AFR | FF=123pph TAS=160 | | | Fix | | 032 | 11.5 | 4.0 | 0204+00 | | | GS=172 TW=12 DA=4L | | | PSX 173%31 | | (TK) | | 4+00 | | 8# | 854# | RX-W=11 WINDS=170/16 | | | | | 028T | | 7.0 | 0211+00 | | 839.5# | RX-W=10 CA=4R TH=032 | | | Matagorda | | 1 | 20 | 7+00 | | 14.5# | | TW=12 GS=172 | | | | | 283T | | 10.8 | 0221+48 | | 817.5# | LX-W=16 CA=6L TH=277 | | | Port Lavaca | | | 30 | 10+48 | | 22# | | TW=7 GS=167 | | Sheet 15 of 44 ## 9a. | DEST | | APC | | | TOWER | | | GND | |--------------|-------|------|------|-------|---------|------|-------|----------------------| | ELEV | CONT | | | | | | CNTL | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | Huntsville | | | | | | | | FF=475pph TAS=260 | | | | | | | 1830Z | | 3500# | WINDS=020/30 | | Hearne | | 277T | | 12.2 | 1842+12 | | 3403# | RX-W=30 CA=7R TH=284 | | | | | 54 | 12+12 | | 97# | | TW=5 GS=265 | | Giddings Lee | | 203T | | 9.5 | 1851+42 | | 3328# | RX-W=2 CA=0 TH=203 | | | | | 46 | 9+30 | | 75# | | TW=30 GS=290 | ## 9b. | DEST | | APC | | | TOWER | | | GND | | |--------------|-------|------|------|------|---------|-------|---------|-------------|------------| | ELEV | | CONT | | | 3500# | | | CNTL | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | | NOTES | | TO | CHAN |] | | | ATA | FUEL | AFR | FF=475pph | TAS=260 | | Fix | | 263T | | 6.0 | | | | GS=230 HW=3 | 0 DA=21L | | CLL 067º/21 | | (TK) | 23 | 6+00 | 1836Z | 47.5# | 3452.5# | RX-W=93 WIN | IDS=335/97 | | | | 288T | | 9.85 | 1845+51 | | 3374.5# | RX-W=70 CA= | 16R TH=304 | | Hearne | |] | 32 | 9+51 | | 78# | | HW=65 GS=19 | 5 | | | | 203T | | 8.5 | 1854+21 | | 3307# | RX-W=72 CA= | 16R TH=219 | | Giddings Lee | | 1 | 46 | 8+30 | | 67.5# | | TW=65 GS=32 | 5 | ## 10a. | DEST | | APC | | | TOWER | | | GND | |--------------|-------|------|------|-------|---------|------|-------|-----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | Lockridge | | | | | | | | FF=245pph TAS=185 | | | | | | | 0200Z | | 1200# | Winds=330/25 | | Cherokee Co. | | 101T | | 11.3 | 0211+18 | | 1154# | LX-W=19 CA=6L TH=095 | | | | | 38 | 11+18 | | 46# | | TW=17 GS=202 | | Center | | 093T | | 16.4 | 0227+42 | | 1087# | LX-W=22 CA=7L TH= 086 | | | | | 54.5 | 16+24 | | 67# | | TW=14 GS=199 | ## Assignment Sheet 6-7-3 Sheet 16 of 44 ## 10b. | DEST | | APC | | | TOWER | | | GND | | |--------------|-------|------|------|-------|---------|-------|---------|-------------|------------| | ELEV | | CONT | | | | | 1200# | CNTL | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | FF=245pph | TAS=185 | | Fix | | 110T | | 4.0 | | | | GS=202 TW=1 | 7 DA=15R | | FZT 217º/13 | | (TK) | 13.5 | 4+00 | 0204Z | 16.5# | 1183.5# | LX-W=48 WIN | DS=002/51 | | | | 096T | | 7.95 | 0211+57 | | 1151# | LX-W=51 CA= | 16L TH=080 | | Cherokee Co. | | | 25 | 7+57 | | 32.5# | | TW=4 GS=189 | | | | | 093T | | 17.5 | 0229+27 | | 1079.5# | LX-W=51 CA= | 16 TH=077 | | Center | | | 54.5 | 17+30 | | 71.5 | | TW=2 GS=187 | , | ## 11a. | DEST | | APC | | | TOWER | | | GND | |------------|-------|------|------|-------|---------|------|-------|-----------------------| | ELEV | | CONT | _ | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | Liberty | | | | | | | | FF=131pph TAS=175 | | | | 1 | | | 0430Z | | 1552# | WINDS=130/40 | | Livingston | | 335T | 40 | 11.4 | 0441+25 | 25 | 1527# | RX-W=17 CA=6R TH=341 | | | | 1 | | 11+25 | | | | TW=37 GS=212 | | Navasota | | 252T | 59.5 | 18.5 | 0459+55 | 40 | 1487# | LX-W=34 CA=11L TH=241 | | | | | | 18+30 | | | | TW=22 GS=197 | ## 11b. | DEST | | APC | | | TOWER | | | GND | |------------|-------|------|------|-------|---------|------|---------|----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | FF=131pph TAS=175 | | Fix | | 344T | 21 | 8.0 | | 17.5 | | GS=158 HW=17 DA=3R | | DAS 325/16 | | (TK) | | 8+00 | 0438Z | | 1534.5# | LX-W=9 WINDS=315/18 | | Livingston | | 326T | 19.5 | 7.55 | 0445+33 | 16.5 | 1518# | LX-W=4 CA=1 TH=325 | | | | | | 7+33 | | | | HW=18 GS=157 | | Navasota | | 252T | 59.5 | 21.6 | 0507+09 | 47 | 1471# | RX-W=16 CA=5R TH=257 | | | | | | 21+36 | | | | HW=8 GS=167 | ## Assignment Sheet 6-7-3 Sheet 17 of 44 ## 12a. | DEST | | APC | | | TOWER | | | GND | |--------------|-------|------|------|-------|---------|------|--------|-----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUE | AFR | | | Angelina | | | | | | | | FF=110pph TAS=148 | | | | | | | 1430L | | 827# | WINDS=358/36 | | Cherokee Co. | | 328T | 45 | 23.2 | 1453+12 | 42.5 | 784.5# | RX-W=18 CA=7R TH=335 | | | | | | 23+12 | |] | | HW=32 GS=116 | | Carter | | 237T | 33.5 | 12.1 | 1505+18 | 22 | 762.5# | RX-W=31 CA=12R TH=249 | | | | | | 12+06 | | | | TW=19 GS=167 | ## 12b. | DEST
ELEV | | APC | TOWER | | | | GND
CNTL | | | |--------------|-------|--------|-------|-------|---------|------|-------------|------------------|-------| | ROUTE | IDENT | (1.50) | DIST | ETE | ETA | LEG | EFR | NO. | ΓES | | TO | CHAN | | 1 *** | | ATA | FUEL | AFR | FF=110pph TAS | =148 | | Fix | | 321 | 22 | 8.0 | | 14.5 | | GS=165 TW=17 DA | =14L | | LFK 319/26.5 | | (TK) | | 08+00 | 1438Z | 7 | 812.5# | RX-W=36 WINDS=0 | 75/40 | | Cherokee Co. | | 334T | 24 | 9.2 | 1447+12 | 17 | 795.5# | RX-W=39 CA=15R T | H=349 | | | | 1 | | 9+12 | | 7 | | TW=8 GS=156 | | | Carter | | 237T | 34 | 11.0 | 1458+12 | 20 | 775.5# | LX-W=12 CA=5L TH | =232 | | | 1 | | | 11+00 | | | | TW=38 GS=186 | | ## 13a. | DEST | | APC | | | TOWER | | | GND | |-------------|-------|------|------|-------|---------|------|-------|----------------------| | ELEV | | CONT | | | | | | CNTL | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | | | USS Lincoln | | | | | | | | FF=122pph TAS=223 | | | | | | | 1240L | | 1100# | WINDS=158/13 | | Williams | | 040T | 55 | 14.4 | 1254+24 | 29 | 1071# | RX-W=12 CA=3R TH=043 | | | | | | 14+24 | | | | TW=6 GS=229 | | Houma | | 104T | 36.5 | 10.25 | 1304+39 | 21 | 1050# | RX-W=12 CA=3R TH=107 | | Terrebonne | | | | 10+15 | | | | HW=8 GS=215 | ## Assignment Sheet 6-7-3 Sheet 18 of 44 ## 13b. | DEST | | APC | | | TOWER | | | GND | | | |------------|-------|--|------|-------|---------|--------|---------|-----------------------|--|--| | ELEV | | CONT | | | | | | CNTL | | | | ROUTE | IDENT | CUS | DIST | ETE | ETA | LEG | EFR | NOTES | | | | TO | CHAN | 8 | | 8 | ATA | FUEL | AFR | FF=122pph TAS=223 | | | | Fix | | 032 | 34.5 | 9.0 | | 18 | | GS=230 TW=7 DA=11L | | | | TBD 254/45 | 1 | (TK) | | 9+00 | 1249L | -8 | 1082# | RX-W=43 WINDS=130/43 | | | | Williams | | 053T | 21.5 | 6.1 | 1255+03 | 12.5 | 1069.5# | RX-W=42 CA=11R TH=064 | | | | | | | | 6+03 | | | | HW=10 GS=213 | | | | Houma | | 104T | 36.5 | 11.9 | 1306+57 | 24 | 1045.5# | RX-W=19 CA=5R TH=109 | | | | Terrebonne | 0 | A CONTRACTOR OF THE PARTY TH | | 11+54 | | - 5000 | | HW=39 GS=184 | | | Assignment Sheet 6-7-3 Sheet 19 of 44 #### NAVIGATION PRACTICE EXAM - 1. The three instruments essential for Dead Reckoning (DR) navigation are the compass, clock, and - A. sextant. - B. temperature gauge. - C. altimeter. - D. airspeed indicator. - 2. What is
the Local Mean Time (LMT) of arrival at Apalachicola (ZD -5) if an aircraft departs Waycross-Ware County at 1700 GMT with an estimated time enroute of 38 minutes? - A. 1238 LMT - B. 1738 LMT - C. 1748 LMT - D. 2238 LMT - 3. The aircrew's primary instrument for determining direction in the aircraft is the - A. wet compass. - B. #2 needle. - C. gyro indicator. - D. remote gyro vertical compass card. - 4. The secondary instruments used in DR navigation are the - A. OAT and airspeed indicator. - B. compass and airspeed indicator. - C. altimeter and OAT. - D. OAT and compass. - 5. The tail of the #2 needle on a BDHI displays the Magnetic - A. heading to a VOR. - B. bearing to a TACAN. - C. heading to a TACAN. - D. radial of a TACAN. | | | 01 | | | |-----------------------|------------|--------|------|------| | A cc1 | gnment | Sheet | 6-1 | /_'~ | | $\boldsymbol{\sigma}$ | giiiiiciii | DIICCL | U- / | | Sheet 20 of 44 - 6. The actual path that an aircraft travels between two points is known as its - A. course. - B. track. - C. drift. - D. heading. - 7. A true course is always - A. the actual path the aircraft has flown over the ground. - B. the same as the aircraft's true heading. - C. the intended flight path of the aircraft. - D. measured relative to the nose of the aircraft. - 8. Isogonic lines connect points of equal - A. elevation. - B. deviation. - C. variation. - D. pressure. - 9. What is the magnetic course from Groveton Trinity Airport (31° 05.0'N, 095° 09.5'W) to Cherokee Co. (31° 52.0'N, 095° 13.0'W)? - A. 001° - B. 081° - C. 176° - D. 351° - 10. By definition, the following is/are (a) great circle(s): - A. All parallels of latitude. - B. Equator. - C. Meridians. - D. Both B and C Sheet 21 of 44 11. Using the BDHI to the right, what is the Lat/Long of the indicated position from the Lufkin VORTAC located approximately 31° 10.0'N, 094° 43.0'W? C. 31° 05.5'N, 094° 23.5'W D. 31° 11.7'N, 094° 51.0'W 12. If an aircraft is traveling at 650 knots, it will travel 1 NM in ______ - A. 5.5 seconds. - B. 9.2 seconds. - C. 92 seconds. - D. .92 minutes. 13. How long can an aircraft fly with 121 GALLONS of fuel and a consumption rate of 160 pounds/hour? (Fuel density conversion factor is 6.2 pounds/gallon). - A. 0 hours 45 minutes - B. 2 hours 00 minutes - C. 3 hours 15 minutes - D. 4 hours 41 minutes 14. If a ground speed check indicates that an aircraft has flown 12 NM in 6 minutes, a flight of 2 hours and 34 minutes would cover a distance of - A. 308 NM. - B. 320 NM. - C. 470 NM. - D. 510 NM. 15. What is an aircraft's ground speed if it has flown 1 NM over the ground in 22 seconds? - A. 79 knots - B. 132 knots - C. 164 knots - D. 274 knots Assignment Sheet 6-7-3 Sheet 22 of 44 | 16. | What | is the | e flight | time | availabl | e with | ı a fu | el su | pply | of | 1390 | pound | s and | a c | onsun | nption | rate | of | 1200 | |-----|--------|--------|----------|------|----------|--------|--------|-------|------|----|------|-------|-------|-----|-------|--------|------|----|------| | pou | ınds p | er ho | ur? | | | | | | | | | | | | | | | | | - A. 1 hour 1 minute - B. 1 hour 9 minutes - C. 1 hour 17 minutes - D. 1 hour 25 minutes - 17. What is an aircraft's Mach number if it is flying at a pressure altitude of 15,000 feet, a CAS of 225 with an OAT of 40°C? - A. .45 - B. .48 - C. .50 - D. .52 - 18. What calibrated airspeed must they maintain if an aircrew desires to fly a TAS of 300 knots at a pressure altitude of 25,000 feet and an OAT of -25 degrees C? - A. 180 knots - B. 186 knots - C. 204 knots - D. 210 knots - 19. What is the aircraft's Mach number if it is flying at a pressure altitude of 11,000 feet and a CAS of 800 knots? - A. 1.38 - B. 1.43 - C. 1.46 - D. Need more information to determine Mach number Assignment Sheet 6-7-3 Sheet 23 of 44 - 20. What is the aircraft's true airspeed if its CAS is 600 knots, the altimeter indicates 15,000 feet (zero error), the OAT is -30 degrees C, and the pressure altitude is 14,500 feet? - A. 620 knots - B. 626 knots - C. 639 knots - D. 700 knots - 21. What is the pressure altitude if TAS is 170 knots, calibrated airspeed is 153 knots, and the OAT is -20 degrees C? - A. 4,200 feet - B. 5,600 feet - C. 9,600 feet - D. 11,200 feet - 22. What is an aircraft's TAS if the altimeter indicates 32,000 feet (zero error), the IAS is 320 kts, the OAT is -60°C, and the altimeter setting shows 30.92? - A. 436 - B. 450 - C. 455 - D. 468 - 23. The air vector represents - A. magnetic heading and true airspeed. - B. true heading and ground speed. - C. true heading and true airspeed. - D. wind direction and velocity. - 24. Wind direction and velocity at altitude are stated from - A. a magnetic direction and speed in knots. - B. a magnetic direction and speed in miles per hour. - C. a true direction and speed in miles per hour. - D. a true direction and speed in knots. Assignment Sheet 6-7-3 Sheet 24 of 44 - 25. What TH and GS are predicted if an aircrew desires to fly a preflight TC of 206° at a TAS of 470kts and the preflight winds are reported as 230/30? - A. 190°/443 kts - B. 208°/497 kts - C. 208°/443 kts - D. 222°/443 kts - 26. What is the true heading and predicted ground speed of an aircraft if the wind is 151 degrees/47 knots, TAS is 120 knots, and the desired true course is 267 degrees? - A. 246 degrees/ 99 knots - B. 246 degrees/141 knots - C. 288 degrees/ 99 knots - D. 288 degrees/141 knots - 27. While preflight planning for a true course of 285, an aviator is informed that the preflight winds are 107/40. How does the predicted TH and GS compare to the TC and TAS? - A. TH increases and GS increases - B. TH decreases and GS increases - C. TH increases and GS decreases - D. TH decreases and GS decreases - 28. An aircrew desires to fly a true course of 290 degrees at a TAS of 192 knots. Winds are 050 degrees/40 knots. What true heading should be flown and what is the predicted ground speed? - A. 279 degrees/172 knots - B. 279 degrees/212 knots - C. 301 degrees/172 knots - D. 301 degrees/212 knots Assignment Sheet 6-7-3 Sheet 25 of 44 - 29. Which of the following is a possible wind direction and velocity if an aviator finds their track has been 150 degrees after drifting right and noting that their groundspeed is less than their TAS? - A. 110 degrees/45 knots - B. 180 degrees/45 knots - C. 290 degrees/45 knots - D. 360 degrees/45 knots - 30. What is the wind direction and velocity if, while flying on a true heading of 154 degrees at a TAS of 170 knots, an aircrew takes a fix and determines that the aircraft's track has been 144 degrees with a ground speed of 180 knots? - A. 035 degrees/32 knots - B. 249 degrees/10 knots - C. 252 degrees/32 knots - D. 252 degrees/46 knots - 31. After determining that their groundspeed is greater than their TAS and that they have drifted right 33° to 333 degrees, the aircrew can estimate a possible wind direction of . - A. 010 degrees. - B. 100 degrees. - C. 195 degrees. - D. 280 degrees. - 32. What is the wind direction and velocity if an aircraft's track has been 103 degrees with a true heading of 091 degrees, groundspeed is 375, and TAS is 425? - A. 043 degrees/ 50 knots - B. 043 degrees/100 knots - C. 095 degrees/ 50 knots - D. 163 degrees/100 knots Assignment Sheet 6-7-3 Sheet 26 of 44 - 33. Which of the following is a possible wind direction and velocity if the aircraft's track has been 214 degrees after drifting left 12 degrees and the groundspeed is greater than the TAS? - A. 005 degrees/32 knots - B. 097 degrees/24 knots - C. 257 degrees/40 knots - D. More information required to compute winds. - 34. While enroute from Biggs AAF to MCAS Yuma, an aircrew determines that their groundspeed has been greater than their TAS and that they are drifting left. What general type of wind are they experiencing? - A. Left headwind - B. Right headwind - C. Left tailwind - D. Right tailwind - 35. While enroute from Offut AFB to Patrick AFB, an aircrew determines that their groundspeed has been less than their TAS and that they are drifting left. What general type of wind are they experiencing? - A. Left headwind - B. Right headwind - C. Right tailwind - D. Left tailwind - 36. An aircraft is flying with a true heading of 200 degrees and a TAS of 175 knots. 14 degrees of left drift is observed. What is the aircraft's track? - A. 186 degrees - B. 200 degrees - C. 214 degrees - D. More information required to determine aircraft's track - 37. What course should be flown if an aircraft is currently on a magnetic heading of 275 degrees inbound to NAS Pensacola, the aircraft's TACAN shows it on the 064 degree radial at 60 DME, and approach control requests the aircraft proceed direct to the SANDY Intersection (310 degree radial at 50 DME)? - A. 095 degrees - B. 102 degrees - C. 275 degrees - D. 282 degrees - 38. The jet log's PRIMARY purpose is - A. to provide route navigation data. - B. for route timing. - C. for aircrew coordination. - D. for fuel management. - 39. Using the figure to the right, what course and distance must be flown to proceed from the aircraft's present position direct to the 190 radial/25 DME? - A. 101 degrees/73 NM - B. 110 degrees/37 NM - C. 281 degrees/37 NM - D. 281 degrees/73 NM - 40. All of the following are basic flight planning steps except - A. plot new course and distance using TACAN fix. - B. find heading and groundspeed using preflight winds. - C. compute leg fuel using ETE and fuel flow. - D. compute enroute time using groundspeed. CONTINUED ON THE PRACTICAL EXERCISE Assignment Sheet 6-7-3 Sheet 28 of 44 #### NAVIGATION PRACTICE EXAM #### **Practical Exercise** DIRECTIONS for questions 41 and 42: Use the appropriate area on your TPC chart and write your answers on the jet log sheet provided. ### **SITUATION FOR ITEM 41:** Route of flight: DeSoto airport (32° 04'N, 093° 46'W) direct Joyce airfield (31° 58'N, 092° 40'W) direct Hart airfield (31° 33'N, 093° 29'W). TAS will be 190, with a current fuel on board of 1800 lbs and a fuel
flow of 240pph. The preflight winds are 353/28. 41. What is the EFR overhead Hart airfield? #### SITUATION FOR ITEM 42: After 6 minutes and 42 seconds of flight, the aircraft is found to be directly overhead the 469' tower located approximately 32° 05'N, 093° 13'W. 42. Following the planned route of flight, calculate the actual winds and compute the EFR overhead Hart airfield. END OF PRACTICE EXAM Assignment Sheet 6-7-3 Sheet 29 of 44 41. | ROUTE | IDENT | CLIC | DIST | ETE | ETA | LEG | EFR | NOTES | |-------|-------|------|-------|-----|-----|------|-----|-------| | то | CHAN | CUS | וסוסו | | ATA | FUEL | AFR | NOTES | 42. | ROUTE | IDENT | CLIC | DIST | ETE | ETA | LEG | EFR | NOTES | |-------|-------|------|------|-----|-----|------|-----|-------| | то | CHAN | CUS | DIST | | ATA | FUEL | AFR | NOTES | Sheet 30 of 44 # NAVIGATION PRACTICE EXAM ANSWER KEY | 1.D | 11.B | 21.C | 31.C | |------|------|------|------| | 2.A | 12.A | 22.C | 32.B | | 3.D | 13.D | 23.C | 33.A | | 4.C | 14.A | 24.D | 34.D | | 5.D | 15.C | 25.C | 35.B | | 6.B | 16.B | 26.B | 36.A | | 7.C | 17.A | 27.B | 37.C | | 8.C | 18.C | 28.D | 38.D | | 9.D | 19.B | 29.A | 39.D | | 10.D | 20.B | 30.C | 40.A | 41. | DEST
ELEV | | APC
CONT | | | TOWER | | | GND
CNTL | |--------------|---------------|-------------|------|---------------|------------|-------------|------------|--------------------------------------| | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES | | DeSoto | | | | | | | 1800 | FF=240 TAS=190
WINDS=353/28 | | Joyce | | 096T | 56.8 | 17.3
17+18 | 17+18 | 69# | 1731 | LX-W=28 CA=8L TH=088
TW=7 GS=197 | | Hart | | 238T | 49.2 | 14.6
14+36 | 31+54 | 58.3# | 1672.7 | RX-W=26 CA=8R TH=246
TW=13 GS=203 | 42. | | | _ | | _ | _ | _ | _ | _ | |-------------------|---------------|--------------|------|----------------|------------|-------------|------------|---| | DEST
ELEV | | APC
CONT | | | TOWER | _ | | GND
CNTL | | ROUTE
TO | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | EFR
AFR | NOTES
FF=240 TAS=190 | | Fix
469' Tower | | 090T
(TK) | 28 | 6.7
6+42 | 6+42 | 26.8# | 1773.2 | GS=250 DA=2R LX-W=7
TW=60 WINDS=276/61 | | Joyce | | 103T | 29.3 | 7.0
7+00 | 13+42 | 28# | 1745.2 | RX-W=7 CA=2R TH=105
TW=60 GS=250 | | Hart | | 238T | 49.2 | 20.65
20+39 | 34+21 | 82.8# | 1662.4 | RX-W=37 CA=11R TH=249
HW=47 GS=143 | | ROUTE | IDENT | | | | ETA | LEG | EFR | | |-------|-------|-----|------|-----|-----|-------|-------|-----------| | ТО | CHAN | CUS | DIST | ETE | ATA | FUEL | | NOTES | | 10 | OIN | | | | ЛІЛ | I OLL | TI IX | FRCST ALT | | | | | | | | | | | | | - | | | | | | | | | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA | LEG
FUEL | | NOTES | |-------|---------------|-----|------|-----|-----|-------------|-----|-----------| | ТО | CHAN | | | | ATA | FUEL | AFK | FRCST ALT | | | | | | | | | | | | ROUTE | IDENT | | | | ETA | LEG | EFR | | |-------|-------|-----|------|-----|-----|-------|-------|-----------| | ТО | CHAN | CUS | DIST | ETE | ATA | FUEL | | NOTES | | 10 | OIN | | | | ЛІЛ | I OLL | TI IX | FRCST ALT | | | | | | | | | | | | | - | | | | | | | | | ROUTE | IDENT | | | | ETA | LEG | EFR | | |-------|-------|-----|------|-----|-----|-------|-------|-----------| | ТО | CHAN | CUS | DIST | ETE | ATA | FUEL | | NOTES | | 10 | OIN | | | | ЛІЛ | I OLL | TI IX | FRCST ALT | | | | | | | | | | | | | - | | | | | | | | | ROUTE | IDENT | | | | ETA | LEG | EFR | | |-------|-------|-----|------|-----|-----|-------|-------|-----------| | ТО | CHAN | CUS | DIST | ETE | ATA | FUEL | | NOTES | | 10 | OIN | | | | ЛІЛ | I OLL | TI IX | FRCST ALT | | | | | | | | | | | | | - | | | | | | | | | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA | LEG
FUEL | | NOTES | |-------|---------------|-----|------|-----|-----|-------------|-----|-----------| | ТО | CHAN | | | | ATA | FUEL | AFK | FRCST ALT | | | | | | | | | | | | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA | LEG
FUEL | | NOTES | |-------|---------------|-----|------|-----|-----|-------------|-----|-----------| | ТО | CHAN | | | | ATA | FUEL | AFK | FRCST ALT | | | | | | | | | | | | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA | LEG
FUEL | | NOTES | |-------|---------------|-----|------|-----|-----|-------------|-----|-----------| | ТО | CHAN | | | | ATA | FUEL | AFK | FRCST ALT | | | | | | | | | | | Assignment Sheet 6-7-3 Sheet 39 of 44 | ROUTE | IDENT
CHAN | CUS | DIST | ETE | ETA
ATA | LEG
FUEL | | NOTES | |-------|---------------|-----|------|-----|------------|-------------|-----|-----------| | ТО | CHAN | | | | AIA | FUEL | AFR | FDOOT ALT | | | | | | | | | | FRCST ALT | | | | | | | | | | | Assignment Sheet 6-7-3 Sheet 40 of 44 | DOUTE | | | | | | | <u> </u> | | |-------|-------|-------------|------|-----|--------------|------|----------|--------------| | ROUTE | IDENT | | DIST | ETE | ETA | LEG | EFR | NOTES | | TO | CHAN | | | | ATA | FUEL | AFR | FRCST ALT | Assignment Sheet 6-7-3 Sheet 41 of 44 # **APPENDIX A** ## **TOLERANCES** NOTE 1: End of chapter study questions have computer-aided solutions. Your solution should be within acceptable error tolerances as listed below. #### General Final exam 80% Measure Direction +/- 1 degree Measuring Distance +/- ½ nautical mile Pulling/Plotting Lat/Long +/- 1 minute #### **CR 3** NOTE 2: +/-1 unit on logarithmic scale is based on the distance per tick-mark on the 10 to 15 section of the CR-3. This equates to approximately +/-1%. #### Front Side Time +/- one unit on logarithmic scale* Speeds Groundspeed +/- one unit on logarithmic scale* True Airspeed +/- 2 knots Mach # +/- .01 Distance +/- one unit on logarithmic scale* Fuel Flow +/- one unit on logarithmic scale* Fuel Quantity +/- one unit on logarithmic scale* ### Back Side Headwind/Tailwind Comp If wind velocity
< 70 knots +/- 3 knots If wind velocity $\geq 70 \text{ knots } +/-5 \text{ knots}$ Crosswind Components If wind velocity < 70 knots +/- 3 knots If wind velocity $\geq 70 \text{ knots} +/-5 \text{ knots}$ In-flight Winds If wind velocity $< 70 \text{ knots } +/- 3^{\circ} \text{ and } 3 \text{ knots}$ If wind velocity $\geq 70 \text{ knots } +/-5^{\circ} \text{ and } 5 \text{ knots}$ ## Mission Planning/Jet Log EFR Problem specific. Each problem takes into account each individual skill required to perform the task. Every skill has a tolerance, which creates a pyramid of possible answers. Using the pyramid enables us to ensure if you are within the tolerances for each individual skill. Maintaining this accuracy will allow you to be within the tolerances for the final EFR calculation! ## FOR TRAINING USE ONLY # **Preflight Wind Calculations:** # **Preflight** - 1. Draw your wind "T" - 1. TC on TOP - 2. Fill in cardinal directions - 2. Draw your known winds - 3. Quartering Analysis - 4. Plot winds on CR-3 - 5. Rotate compass rose to TC - 6. Set TAS on wind side of CR-3 - 7. Identify XW (crosswind) & HW/TW components - 8. Add/Subtract HW/TW from TAS: GS - 9. Estimate crab angle (10% Rule or Rules of 60) - 10. Use XW to find Crab Angle. (actual / CR-3) - 11. Add/Subtract Crab angle to TC: TH # **Inflight Wind Calculations:** # **Inflight** # TH To solve - YOU MUST HAVE/FIND: - 1. Draw your wind "T" - 1. TH on TOP - 2. Fill in all directions - Plot Track. Determine Drift Angle (DA) - 3. Estimate XW (crosswind) (10% Rule/Rules of 60) - 4. Determine HW/TW. Plot on wind "T" - 5. Vector Analysis (Estimate Wind): - -Wind Direction: Approx. 45 degrees for equal strength or 30 deg off strong side -Strength: All of the big, half of the small - Set TK (track) and TAS on CR-3. Yes, TRACK! - 7. Find DA on CR-3 (XW on outside/read in for DA) - 8. Plot cross wind on CR-3 - 9. Plot HW/TW on CR-3 - 10. Rotate intersection to top of CR-3 (TC) - 11. Read the direction and kts. This is your wind! Sheet 1 of 1 #### **JOB SHEET 6-7-4** #### FLIGHT PLANNING AND CONDUCT #### A. INTRODUCTION Any successful military operation is a result of careful planning and coordination. This requires all participants in the operation to carefully plan each of their missions in order to execute the plan flawlessly and strive to be <u>on target</u>, <u>on time</u>. This chapter introduces methods that enable the aircrew to develop a basic flight plan incorporating elements from each preceding chapter. ## B. EQUIPMENT - 1. Common Hand Tools - a. COMPUTER, AIR NAVIGATION, CR-3 - b. PLOTTER-PROTRACTOR, AIR NAVIGATION, CP-1LX - c. DIVIDER, DRAFTING PLAIN, 176 ### C. REFERENCES 1. Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200 ## D. SAFETY PRECAUTIONS None ## E. JOB STEPS - 1. Complete the Navigation Chapter 7 Practice Problems. - 2. Check your work by referring to the answers at the end of the chapter. - 3. Complete the Navigation Practice Exam. - 4. Check your work by referring to the answers at the end of the exam. # F. SELF-TEST QUESTIONS All questions and answers are in the book. Ask the instructor if you need further clarification.